CAN总线冗余的船舶监控系统设计方案

CAN总线冗余的船舶监控系统设计方案,第1张

CAN总线冗余的船舶监控系统设计方案

 针对我国造船业的发展现状和现有系统中存在的一些问题,提出一种基于冗余CAN总线设计的船舶监控系统。通过对CAN收发器的冗余,实现CAN总线物理层上的冗余,并在CAN总线上增加保护电路,最大可能地保证通信的可靠性。针对模拟通道的抗干扰设计方法,提出隔离式模拟量测量模块的设计方法。

关键词  模拟量隔离  CAN总线冗余设计  船舶监控系统  MC9S080Z16  TJA1050T

引言

  近年来,我国的造船业取得了飞跃性的发展。据船舶工业统计快报报道,2007年,中国造船完工量1893万载重吨,比上年增长30%;新承接船舶订单9845万载重吨,比上年增长132%。随着自动化水平的提高,大大小小的船舶都安装了监控系统。目前船舶自动监测系统主要有主从分布式控制、集散式控制等,但这些控制方式都存在系统结构复杂、控制集中等缺点。本监控系统采用了冗余CAN总线设计船舱自动监测系统,将传统分布式监控系统中的控制功能下放到现场监控单元中,由分布于现场的各监控单元完成数据采集、处理、控制运算、输出等工作。与上位机的信息交互通过现场总线进行。在计算机中以文字、列表、曲线等形式显示现场的数据、变化趋势、故障情况和报警状态,为管理人员的 *** 作提供可靠、准确的实时信息,从而实现实时监控。基于这种方式的监控系统是船舶自动监控系统的重要发展方向。

1  系统工作原理及功能

  系统整体结构框图如图1所示,模拟量输入板卡和数字量输入板卡通过接插件连接到主控制器板上,由主控制器完成对数据的采集与转换。主控制器将数据打包,发送到其他CAN节点,同时接收并解析其他节点发送来的数据,完成对现场模块的控制。模拟量输入板卡主要是对外部模拟信号进行滤波、隔离、调理,滤波后变成一个适合于单片机进行采样的模拟电压。其采集的模拟信号主要有两种类型: 0~10 V的模拟电压信号和4~20 mA的电流信号。这是工业现场中最常用的模拟信号。数字量输入板卡主要采集外部开关量信号,完成开关量的隔离、滤波,然后送到主控制器完成对数字量的采集。其中模拟量的隔离输入和冗余的CAN总线,是本设计比现有的一些基于现场总线的监控产品的先进之处。

CAN总线冗余的船舶监控系统设计方案,第2张
图1  系统结构框图

2  硬件电路设计

2.1  主控制器选择

  为了减少外部器件,提高系统的稳定性,主控制器选用带有片内A/D和CAN控制器的MC9S08DZ16。该单片机是Freescale公司2007年推出的一款高性能8位单片机;基于HCS08内核,最高运行时钟频率为40 MHz,最多支持32个优先级;内部集成有16  KB Flash存储器,1 KB SRAM、512 B在线可编程EEPROM、1个12位的A/D转换器,多种节电模式以及2种超低功耗停止模式,同时内部集成CAN2.0 A/B控制器以及多种标准串行接口

2.2  CAN总线的电气保护

  船舶机舱中工况条件十分恶劣,各种电磁干扰对物理链路及数据链路的正常工作都有严重的影响。这些对控制系统是极大的威胁,非常容易导致系统瘫痪。为了最大程度地保证网络系统正常工作,采取了以下两种措施:第一种措施是电气隔离。通信电缆是网络系统中受干扰最大的部分,而且各种干扰也极容易顺通信电缆进入系统,从而引起系统的工作不正常。为了切断这条干扰途径,保护CAN控制器,在CAN控制器与收发器之间增加了6N137,以进行光电隔离。

  第二种措施是在总线上增加保护器件。当发生雷击或其他强烈干扰时,巨大的能量如果来不及泄放,就会损坏收发器。为了防止干扰对收发器的损坏,增加了防雷管和TVS作总线保护。当受到雷击时,并接在总线上的防雷管能将能量泄放掉。但是一般情况下,防雷管的反应速度慢,钳位电压高(约为800 V),因此本设计中,在防雷管后增加了TVS和PTC电阻。TVS能够将总线的压差钳制在6.8 V以下,这样当受到干扰时,TVS能较快地起到保护作用;而PTC电阻能保护收发器免受过流的冲击。在CAN H和CAN L与地之间各自接一个30 pF的小电容,可以起到滤除总线上的高频干扰和防电磁辐射的作用。CAN收发器电气保护原理如图2所示。

CAN总线冗余的船舶监控系统设计方案,第3张
图2  CAN收发器电气保护原理

2.3  冗余CAN总线设计

  虽然在设计时对CAN收发器采取了一些保护措施,但是在船舶机舱的电缆受拉、压、砸、挤等而造成故障的情况却很多,这就不是电气保护所能解决的了。因此,为了降低此类风险以及各种原因引起的收发器的电气损坏,最有效的方法就是实现CAN通信网络的冗余。

  在总线冗余处理上,可使用两套总线,每一套都包含有完整的总线电缆、总线驱动器和总线控制器,或将总线控制器与CPU集成于一体的MCU。实现冗余有两种方法: 一种是后备方式,即一套运行,另一套“休眠”备用,当运行总线发生故障时,启用备用总线;另一种是同时运行方式,如果其中一套发生故障,另一套仍能维持系统的正常运行。这两种方法的优点是同时实现了物理介质、物理层及数据链路层甚至应用层的全面冗余,因此,可以称之为“全面冗余方法”。但全面冗余方法存在着某些不足之处,例如由于节点对系统的构成不敏感,因此,后备方式发现总线开路故障的能力和实时性较差,而同时运行方式下两路同时工作功耗大,且数据链路的冗余较为复杂。本设计使用一种介于两种方法之间的物理冗余技术。物理链路的冗余使用2条总线电缆和2个总线驱动器,且在总线控制器与2个总线驱动器之间增加了一个判断电路,如图3所示。

CAN总线冗余的船舶监控系统设计方案,第4张
图3  CAN总线物理冗余方案

  将两个总线驱动器的发送端连在一起,当节点发送时,CAN总线控制器向两条通信线路同时发送相同的报文;而接收时,判断电路自动选择两条总线中的一个并将其报文送入总线控制器。判断电路以时间优先为选择原则,即哪一路报文抢先到来,哪一路报文就被选中。如果某一总线发生故障,则关闭它与总线控制器的信号通道,同时向CPU发出总线故障中断,而正常总线的信号通道不受影响。

  在判断电路中,设置了两个可重复触发的单稳态触发器,它们分别与两条总线对应,检测报文及其到来的情况。当报文到来时,总线驱动器首先出现一个低电平报文的帧起始位,其下降沿触发单稳,使其输出产生一个高电平宽脉冲。通过调整电容的充放电时间,该脉冲经报文中对应的多次下降沿触发而一直持续到报文结束。

  在总线正常的情况下,当出现报文时,两个单稳态触发器均产生高电平宽脉冲,该高电平脉冲送入RS触发器进行时间优先比较。对于优先者,触发器给对应的或非门低电平,开通相应总线的信号通道;对于滞后者,触发器用高电平关闭对应的或非门。

2.4  4~20 mA电流模拟量的采集

  作为模拟仪表的信号标准,4~20 mA的电流信号在常用传感器中占有非常重要的地位。

CAN总线冗余的船舶监控系统设计方案,第5张
图4  RCV420基本框图和电路连接

  由于单片机无法直接对电流信号进行采样,所以需要先将电流信号转换为电压信号。在本设计中,充分考虑了对这种标准信号的采集转换。选用美国Burr?Brown公司生产的精密电流环接收器芯片RCV420,将4~20 mA电流信号转换为0~5 V电压信号,如图4所示。

  RCV420包含1个高级运算放大器、1个片内精密电阻网络和1个精密10 V电压基准,其总转换精度为0.1%,共模抑制比CMR达86 dB,共模输入电压范围达±40 V。RCV420在满量程时,电压仅下降1.5 V,在环路中串有其他仪表负载,这对变送器电压有严格限制的应用场合非常有用。10 V电压基准提供了一个典型温漂为5×10-6/℃的精密10 V输出。

  为保证RCV420的输出在单片机的0 V~VCC之间,需要适当减小运放增益。方法是在检测电阻Rs上并联匹配电阻Rx,如图5所示。

CAN总线冗余的船舶监控系统设计方案,第6张
图5  增益可调的I/V电路

  调整后的增益值为:

CAN总线冗余的船舶监控系统设计方案,第7张

  通过调整并联电阻Rx的大小,可以调整RCV420的输出范围。为了保证高共模抑制,并联电阻Rx的匹配很重要。Rx的温度参数的任何不一致,都将引起增益误差和CMR的漂移。

  经过计算分析,输入为4~20 mA信号时,令Rx为1.8 kΩ可使输出为0~4.8 V,保证在单片机的ADC输入范围之内。

  在使用RCV420时,有一点需要特别注意:图5中的2个1 μF的电容C1、C2必须是钽电容。最初实验时,C1、C2用的是1 μF的铝电解电容,结果RCV420工作不正常,输出没有规律。检查电路板发现电源电压正常,输入的电流信号稳定,其他器件和连线也没有问题。查阅文献后发现此处必须使用钽电容。更换钽电容后,RCV420工作正常,输出准确、稳定。当有多路4~20 mA电流信号输入时,先使用MAX308进行通路选择,再进行I/V转换。

2.5  模拟量的隔离

  为了防止船舶机舱现场的干扰通过模拟量输入通道进入单片机系统,有必要对模拟电压信号进行隔离。实现直接线性隔离最简单的方法就是采用隔离放大器,而隔离放大器必须满足A/D变换精度和线性要求,如对12位A/D进行隔离,其隔离放大器要达到13位,甚至14位的精度。如此高精度的隔离放大器,价格十分昂贵。本设计中用线性光电耦合器实现了模拟量的隔离,经测试隔离效果良好。电气原理图如图6所示,其中HCNR200光电耦合器由3个光电元件组成。其1、2引脚间是一个A1GaAs发光二极管,3、4引脚,5、6引脚间是两个相邻匹配的光敏二极管。光敏二极管的PN结在反向偏置状态下运行,它的反向电流与光照强度成正比,这种封装结构决定了每一个光敏二极管都能从LED得到近似相等的光强,从而消除了LED的非线性和偏差特性所带来的误差。

CAN总线冗余的船舶监控系统设计方案,第8张
图6  模拟量的光电隔离

  在左侧运算放大器达到平衡状态后,有Ipd1=VIn/R1(Ipd1为光耦器件3脚到4脚的)输出电流,下式中Ipd2为6脚到5脚的输出电流,其大小与光耦器件内部的发光强度成正比)。Ipd1仅仅决定于输入电压以及R1的值,与LED的输出光强特性无关,因此在输入电压与光电二极管的电流之间就建立起很好的线性关系。另外,虽然LED的输出光强随着温度的变化而略受影响,但运放将通过调整发光管电流来进行补偿。由于HCNR200特殊的封装结构,2只光电二极管将得到近似的光强,有 K=Ipd2/Ipd1。根据运算放大器的“虚断”和“虚短”特性,有

CAN总线冗余的船舶监控系统设计方案,第9张

可见,被测电压和输出电压之间存在正比的关系,只要适当选取电阻R1、R3、R4、R5的阻值,就可以得到一定比例的隔离输出电压。按照图6中的参数,通过调整R5的值,可使实际增益K=UAOUT/UAIN≈1。UAIN从0逐渐增大到5 V,测量输出端的电压UAOUT如表1所列。

表1  试验结果
CAN总线冗余的船舶监控系统设计方案,第10张

  从上表数据中可以看到,经过模拟电压隔离的电压差在5 mV下,效果较好。

3  软件设计

  主控制器流程和数据处理流程如图7所示。主控制器首先完成初始化工作,然后就进行数据采集。同时,当接收到数据时,对数据进行解析,然后根据数据实现相应的控制功能。为了保证数据的可靠性,需要进行多次A/D采样,然后根据平均值滤波算法,完成数据的采集。CAN本身具有CRC校验功能,为了保证数据的可靠性,在发送的数据中增加了一个校验字节,即将要发送的数据进行异或运算,得到的值自动存于最后一个字节进行发送。

CAN总线冗余的船舶监控系统设计方案,第11张
图7  主控制器流程与数据处理流程

结语

  CAN总线冗余设计的船舶监控系统是现场总线技术发展的一个缩影,代表未来船舶控制技术的发展方向。本设计中,利用线性光偶实现了模拟量的光电隔离,大大提高了产品的可靠性。另外,利用判断电路成功地解决了CAN总线冗余的问题,具有结构简单、成本低等优点,具有广阔的市场前景。

欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/dianzi/2422010.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2022-08-02
下一篇 2022-08-02

发表评论

登录后才能评论

评论列表(0条)

保存