来自音源的立体声音频信号经R1、R2、R5、C1、C3、C5(R4、R3、R6、C2、C4、C6)组成的网络耦合到BA1404。经IC内部左(右)声道放大,再进行平衡调制,调制后的复合信号从IC的第{14}脚输出,后与第{13}脚上的导频信号通过R9、C15、R10、C16、C17构成的网络进行混频,混频后的复合信号进入IC的{12}脚,对IC的{8}、{9}、{10}脚,C20~C22及L3组成的电容三点式振荡器进行调频,IC的{10}脚上已调制的射频信号经内部放大后从第{7}脚输出,经C18、L2选频后送至天线TX1。要实现调频立体声,BA1404的{5}、{6}脚需外接38kHz晶体,但业余制作时的确很难购得38kHz的专用晶体,所以在无该晶体的情况下,可以参考虚线内的电路,用分立元件制作一个38kHz振荡器,该38kHz信号经过R8、C10送入IC第{5}脚。制作时,L1可用收音机中频变压器TTF-2-1、TTF-2-2或TTF-2-9等,同时注意引脚的连接不要搞错,{3}脚接地,{2}脚接V1的发射极,{1}脚为反馈和输出脚。通过调整其磁芯可以获得频率较稳定、幅度足够高的38kHz信号。特别值得注意的是,C8宜选0.033μF的涤纶电容,不宜选择瓷片电容,因为瓷片电容的稳定性较差,容易出现振荡频率不稳,调频立体声工作不正常的现象。
由于BA1404的高频振荡是电容三点式振荡器,所以频率的稳定性较差,于是本电路不用原来的高频振荡器,改用外接频率较稳的改进型电容三点式振荡器的方法,可满足业余调频广播和调频无线耳机的要求。如ZN-2001型调频立体声无线耳机的发射部分就采用了改进后的电容三点式振荡电路。立体声复合信号经V2电压放大后,通过C26、R14直接加在V3基极实现频率调制。其特点是根据用户需要,可以用螺丝刀在机壳外调整L4的电感量,使其能在88~108MHz范围内自由调节,避开当地调频广播电台的频率。该机另一特点是:电路板上已留有1~5W功率扩展部分,如校园广播时就可将该部分的元件装上,调试后即可投入使用。但值得注意的是,若该无线耳机在增加功率后,仍然采用机上的鞭状天线发射,则强烈的射频信号将产生自身干扰,造成声音失真、有交流声或无声,所以一定要通过50Ω专用的通信电缆将射频信号在室外发射。在装调功率扩展部分时,可以用如图5所示的射频检测器调整各级谐振状态。将射频检测器的输入端(1kΩ电阻的一端)先接在前级放大三极管的集电极,调整集电极上的电感线圈,使射频检测器输出端的电压最高,然后按同样的方法逐级向后级调整,再检测天线端,最后统调各级电感线圈,使输出电压最高,即告完成。与红外无线耳机相比,调频立体声无线耳机的主机(发射机)与接收机之间可以隔着墙壁正常使用,而红外线耳机则不能。另外,普通红外线耳机无立体声功能,所以调频立体声无线耳机更适用,欣赏音乐时,更悦耳动听。
若安装了室外天线,即使很微弱的射频信号也能传很远,所以制作一副良好的天线比单纯提高发射功率有效得多。制作一副水平极化、全向发射的天线比较麻烦,且一般的调频广播电台也采用水平极化方式,为了不产生干扰,所以笔者在此为读者介绍一种组装简易,效率较高的垂直极化天线。由于人在移动时用耳机线兼作收音机天线收音时,耳机线是垂直的;汽车收音机的天线也近似垂直,所以垂直极化更适合移动接收。该天线采用通信机专用的50Ω伞状天线,如图6所示,天线座上有4根或7根振子,每根长约0.75m,垂直的一根为发射天线的主振子,斜着向下的3根或6根振子共同组成模拟地,它们之间的角度是均匀的,主振子与组成模拟地的各振子之间的角度也按要求固定了,整个天线的阻抗为50Ω,10MHz带宽内增益约2dB,驻波小于1.2。
许多场合传输的是数字信号,所以可以参考图7的电路,增设几个元件即可实现发射机的无线数字化传输了。
?四川 杨虹
参数
单位
测试条件
最小值
典型值
最大值
静 态 电 流
IQ(mA)
3.5
3
5
输 入 电 阻
Rin(KΩ)
f=1KHZ
360
540
720
输 入 增 益
GV(dB)
Vin=0.5mv
30
37
声 道 平 衡
CB(dB)
2
混合器输出最大电压
Vom(mvp-p)
THD=<3%
200
38KHZ泄漏电压
Voo(mv)
无信号时
1
导频输出电压
Vop(mvp-p)
无负载时
460
580
声道分离度
Sep(dB)
25
45
输 入 噪 声
Vin(μV)
1
高放输出最大电压
Vosc(mV)
350
600
摘自调频发烧
工作原理(见图一):立体声音频信号经加重和匹配网络由1、2脚输入,经放大后进入FM立体声混合器,产生一个由L+R主信号和L-R的副信号组成的立体声复合信号经缓冲放大后从14脚输出(16、17脚可对复合信号的参数调节,可控制左右平衡度);4、5、6脚的外部分立元件与内部电路组成38KHZ振荡器产生38KHZ信号经缓冲放大后分别供给混合器和1/2分频器,38KHZ信号经分频器得到一个19KHZ的导频信号从13脚输出;从13、14脚输出复合信号和导频信号经匹配网络由11脚进入FM调制器(9、10脚的外围分产元件确定振荡频率)产生一个调频信号,经放大后由7脚输出;2脚为AF偏置,3脚为AF接地点,8脚是RF接地点,15脚为电源正极。(注:11脚输出一个参考电压方便外围分立元件对振荡频率进行控制,这里没采用。)第7脚的信号最后经μpc1651放大输出。
制作要点:电路可以在万用电路板上密集安装,要将多余的铜点去掉;13、14脚上的电阻仅为参考值,由于其值对立体声分离度有关系,要按实际情况定值;L为铁壳可调电感,其参数与频率相关,这里是稳频的关键,要小心;如果要用市电供电,要注意电源,由于电流不大,可用分立式的滤波稳压电源;μpc1651的工作电压为5V,不得超出,容易烧毁。
实验小结:由于《电子报》BBS上有许多网友要求详细的调频立体声发射器资料,所以本人重新收集了有关资料,对简易的分立式、合并式、一体化的调频立体声发射机进行实验,觉得这种BA1404+μpc1651的搭配最容易制作和调试,且频率稳定度相当高(相对于以前BA1404的电路),发射功率不会超出法定范围。爱好者不实际制作中往往会发现38KHz的晶振是个大难题,如果直接用电容代替,则立体声效果全无,本站特地进入一些38KHz的小柱型晶振供爱好者使用,BA1404制作的立体声发射器除了频率不能预置外,其声道分离度已达发烧级的要求,现今虽有1417等新款上市,但由于价格等因素不能被普通发绕友接受,新品的性能较1404比,分离度接近,因为有锁相频率预置功能,频率的稳定性比1404有所提高,但这只是在普通制作的情况下的比较,如果设计电路板时考虑到这些,把高低频部分分开,高频走线能短尽量短,周围布好地线,减小和外部的影响,调频电感用有骨架的可调电感,能用贴片电容最好,这样做出来的板子可以说是高质的了,在无外界强大的冷热影响下频率也相当稳定。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)