基于空间矢量控制(SVPWM)技术的三相电压型整流器设计

基于空间矢量控制(SVPWM)技术的三相电压型整流器设计,第1张

  传统的变压整流器和非线性负载的大量使用使电网中电流谐波含量较高,对飞机供电系统和供电质量造成很大影响。消除电网谐波污染、提高整流器的功率因数是电力电子领域研究的热点。空间矢量PWM(SVPWM)控制具有直流侧电压利用率高、动态响应快和易于数字化实现的特点。本文采用空间矢量技术对三相电压型整流器进行研究,使其网侧电压与电流同相位,从而实现高功率因数整流。

  1 空间矢量控制技术

  SVPWM控制技术通过控制不同开关状态的组合,将空间电压矢量V控制为按设定的参数做圆形旋转。对任意给定的空间电压矢量V均可由这8条空间矢量来合成,如图1所示。任意扇形区域的电压矢量V均可由组成这个区域的2个相邻的非零矢量和零矢量在时间上的不同组合来得到。这几个矢量的作用时间可以一次施加,也可以在一个采样周期内分多次施加。也就是说,SVPWM通过控制各个基本空间电压矢量的作用时间,最终形成等幅不等宽的PWM脉冲波,使电压空间矢量接近按圆轨迹旋转。主电路功率开关管的开关频率越高,就越逼近圆形旋转磁场。

  

基于空间矢量控制(SVPWM)技术的三相电压型整流器设计,第2张

  为了减少开关次数,降低开关损耗,对于三相VSR某一给定的空间电压矢量

基于空间矢量控制(SVPWM)技术的三相电压型整流器设计,第3张
,采用图2所示的合成方法。在扇区I中相应开关函数如图3所示。零矢量均匀地分布在矢量
基于空间矢量控制(SVPWM)技术的三相电压型整流器设计,第3张
的起、终点上,除零矢量外,
基于空间矢量控制(SVPWM)技术的三相电压型整流器设计,第3张
由V1、V2、V4合成,且中点截出2个三角形。一个开关周期中,VSR上桥臂功率开关管共开关4次,由于开关函数波形对称,谐波主要集中在整数倍的开关频率上。

   基于空间矢量控制(SVPWM)技术的三相电压型整流器设计,第6张

 

  2 直接电流控制策略

  三相VSR的电流控制策略主要分为直接电流控制和间接电流控制。直接电流控制采用网侧电流闭环控制,提高了网侧电流的动、静态性能,并增强电流控制系统的鲁棒性。而在直接控制策略中固定开关频率的PWM电流控制因其算法简单、实现较为方便,得到了较好应用,在三相静止坐标系中,固定开关频率的PWM电流控制电流内环的稳态电流指令是一个正弦波信号,其电流指令的幅值信号来源于直流电压调节器的输出,频率和相位信号来源于电网;PI电流调节器不能实现电流无静差控制,且对有功电流和无功电流的独立控制很难实现。在两相同步旋转坐标系(d,q)中的电流指令为直流时不变信号,且其PI电流调节器实现电流无静差控制,也有利于分别对有功电流

基于空间矢量控制(SVPWM)技术的三相电压型整流器设计,第7张
和无功电流
基于空间矢量控制(SVPWM)技术的三相电压型整流器设计,第8张
独立进行控制。

  3 三相VSR数字控制系统

  三相VSR数字控制系统结构如图4所示,控制系统采用电压外环和两个电流内环组成双环控制结构,电压环控制三相VSR直流侧电压,通过输出直流侧电压Vdc与给定参考电压

基于空间矢量控制(SVPWM)技术的三相电压型整流器设计,第9张
差值经过PI调节产生电流参考信号
基于空间矢量控制(SVPWM)技术的三相电压型整流器设计,第7张
,起到跟踪控制输出直流电压的目的;电流环用来按照电压环调节器输出的电流指令进行电流控制,按照电压外环输出的电流信号
基于空间矢量控制(SVPWM)技术的三相电压型整流器设计,第7张
对输入电流进行控制,利用SVPWM算法产生开关信号控制整流器来实现单位功率因数。

    基于空间矢量控制(SVPWM)技术的三相电压型整流器设计,第12张

 

  三相PWM整流器是采用电机矢量控制的思想通过控制电流来调节电压。采样后的三相电流通过CLARK和PARK坐标变换获得两相旋转坐标系下的id、iq分量,将电压误差信号经PI调节作为有功电流指令值,而无功电流

基于空间矢量控制(SVPWM)技术的三相电压型整流器设计,第8张
的指令值可以直接设为零,通过解耦得到三相VSR的指令电压,并通过SVPWM算法得到三相整流器的控制信号。

  3.1 交流侧电压调理电路

  系统网侧给定输入电压为三相交流115 V,对电压进行采样时通过变压器进行降压采样,然后调理电压信号,使电压信号值在TMS320F281 2的数据采集端要求的0~3 V之间,电压调理电路如图5所示。

  

基于空间矢量控制(SVPWM)技术的三相电压型整流器设计,第14张

  3.2 直流电压调理电路

  直流侧输出电压约350 V,为实现对直流侧电压的数据采集,采用运算放大器组成双输入放大电路,通过选择合理的参数值将直流侧的输出电压转换到O~3 V范围之内,然后送入DSPAD接口

  3.3 TMS320F2812程序初始化流程

  通过对空间矢量脉宽调制技术控制算法的详细分析和三相VSR的建模与仿真发现,SVPWM的控制算法具有便于数字化实现的特点。选用目前已经开发比较成熟的低功耗、低成本且具有相当集成度的定点TMS320F2812作为核心控制器。该器件是Tl公司推出的新一代低价格、高性能的32位定点数字信号处理器DSP。数字信号处理器是三相高功率因数整流器的重要组成部分。TMS320F2812实现的软件部分主要包括主程序和中断子程序。主程序主要是完成系统的初始化工作,包括系统时钟设置、初始化寄存器的值和开全局中断以及开事件管理器中断进入工作状态。其程序流程如图6所示。

  

基于空间矢量控制(SVPWM)技术的三相电压型整流器设计,第15张

  4 试验结果

  根据三相VSR的数学模型和相关原理,在实验室中搭建了实验电路并进行了试验。试验中电源为115 V/400 Hz三相交流电源,当负载为217Ω时,测得网侧A相输入电压与A相输入电流波形如图7所示,由图7中可以看出输入电压与输入电流同相位,从而实现了高功率因数整流。

  

基于空间矢量控制(SVPWM)技术的三相电压型整流器设计,第16张

  5 结论

  为了满足航空整流器对整流电源低谐波、高功率因数、快速响应、直流输出稳定等要求,利用输入电压空间矢量定向,提出了一种新的便于数字实现的SVPWM控制策略。由试验结果可以看出,采用空间矢量控制技术设计的整流器网侧电流很好地跟随网侧电压,实现了高功率因数整流,达到设计要求。

欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/dianzi/2434867.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2022-08-02
下一篇 2022-08-02

发表评论

登录后才能评论

评论列表(0条)

保存