摘 要:LDO线性稳压器的低漏失电压、低静态电流特性使电池使用具有高效率和长寿命。针对这2个主要特性和使能开关、过温过流保护等功能,本文设计并实现了一种新型的双极型LDO线性稳压器,调整管采用自由集电极纵向PNP管。
随着电子产品的不断发展,电源管理解决方案不断追求高效率、小占位面积、低成本,这使得低压降(LDO,LowDropout)线性稳压器越来越受欢迎。应用于电池供电的产品中,低漏失电压特性保证了电池使用效率高,而且效率将随着电池电压的下降而上升;低静态电流特性保证了电池使用时间长。本文中设计的LDO线性稳压器,典型情况下100 mA负载时漏失电压为180 mV,静态电流为800μA,空载时漏失电压仅为5 mV,静态电流为35μA;而且设置了使能开关引脚,在使能开关引脚被拉低时,稳压器处于休眠模式,此时静态电流<1μA;另外,该稳压器还具有过温、过流保护功能。
1 电路拓扑结构
该稳压器包括启动电路、恒流源偏置单元、使能电路、调整元件、基准源、误差放大器、反馈电阻网络,保护电路等。为了实现LDO特性稳压器调整元件采用一种自由集电极的纵向PNP管,过温过流保护电路也采用了特殊的结构。电路拓扑结构如图1所示。
基本工作原理是这样的:系统加电,如果使能脚处于高电平时,电路开始启动,恒流源电路给整个电路提供偏置,基准源电压快速建立,输出随着输入不断上升,当输出即将达到规定值时,由反馈网络得到的输出反馈电压也接近于基准电压值,此时误差放大器将输出反馈电压和基准电压之间的误差小信号进行放大,再经调整管放大到输出,从而形成负反馈,保证了输出电压稳定在规定值上;同理如果输入电压变化或输出电流变化,这个闭环回路将使输出电压保持不变,即:
如果使能脚处于低电平,电路将处于休眠状态。
2 启动电路、恒流源偏置电路和使能开关电路
启动电路是为了使恒流源偏置电路开始工作,从而给整个电路建立正常的工作点。使能高电位临界值设为1.4 V,使能低电位临界值设为0.5 V。当使能电压VEN>1.4 V时,电流源给基准源和误差放大器提供偏置,电路处于稳压工作状态;当使能电压VEN<0.5 V时,启动电路将使电流源关闭,基准源和误差放大器的偏置电流为零,导致整个电路处于截至状态,此时电路的静态电流将会很小(<1μA),这种状态就称为稳压器休眠模式。根据上述原理,这部分的电路设计如图2所示。
Q14,Q15,R9,R8构成的微电流源作为启动电路,大电阻R9确保很小的引脚电流(一般为几μA),Q14使电流源启动,Q5使误差放大器、调整管等电路启动。横向PNP晶体管Q7,Q8组成的电流镜给基准源提供偏置,而与调整管同类型的Q2则是给误差放大器提供电流偏置。使能开关电路由横向PNP晶体管Q9A和Q9B组成,Q6使Q9B的发射极电位为VREF+0.7 V=1.93 V;而Q9A的发射极电位为VFB+0.7 V=1.93V。这样当VEN>1.4 V时,Q9A和Q9B完全截至,使能电路失去作用,电路正常稳压工作;同理由Q15可决定稳压器休眠模式时,VEN<0.5 V。
3 调整管
如图3所示LDO线性稳压器简化的结构图,稳压器的静态工作电流(Iq)主要由调整管的基极驱动电流决定,该值越小,则稳压器自身消耗的电流越小,电源电流转换的效率就越高;漏失电压(VDROP)指输出电压在容差范围内的最小输入输出压差,该值越小,则电源电压转换效率越高。对于采用PNP调整管的LDO线性稳压器,Iq≈IDRV=IO/β(β为PNP的电流放大倍数),VDROP=VSAT(VSAT为PNP的饱和压降)[1]。由于在现有工艺下,一般横向PNP的电流放大倍数为50左右,参数漂移较大;VSAT的性能也不好。此设计采用了某工艺下一种自由集电极的纵向PNP,标准单管在集电极电流为-100μA、集电极与发射极压差为-5 V时,β为160,上下漂移50;在集电极电流为-100μA、集电极与基极电流比为10时,VSAT为30 mV左右。因此这种自由集电极的纵向PNP非常适合作调整管。单管的版图剖面结构如图4所示。漏失电压和静态电流电流特性如图5、图6所示。
4 基准电路
由式(1)可知,基准电压对于LDO线性稳压器来说是至关重要的。本设计采用了输出为1.23 V高精度、低温度系数的带隙基准源结构,这也表征了稳压器输出也会有高精度、低温度系数特性。根据双极型带隙基准电路的基本原理[2,4],设计的带隙基准源结构如图7所示。
Q15,Q18,R13构成VT(VT=KT/q,称为热电压)发生器,Q19,Q16和Q17构成的电流源精确地保证Q15和Q18的集电极电流相等。Q15,Q18的发射区面积比为1/10,则他们的结饱和电流IS之比为1/10,因此Q15,Q18的BE结压差ΔVBE为:
其中:VBE为负温度系数,VT为正温度系数。
5 误差放大器
电压调整率和负载调整率是稳压器重要的质量参数,他们分别表示了输入电压变化、输出负载变化稳压器维持输出在规定值上的能力。根据LDO线性稳压器的基本原理[1,3],他们与误差放大器的直流开环增益成反比。因此误差放大器的跨导越大,稳压器的电压调整率和负载调整率性能越好。另外从图1中可知误差放大器的输出电流直接驱动PNP管,所以误差放大器必须能够提供足够大的输出驱动电流,并且输出驱动电流必须能跟随负载的变化,该误差放大器的偏置电流源也必须能随着负载的变化,而误差放大器本身必须在负载变化时,仍处于放大状态,保持强烈的负反馈从而实现稳定的输出。
根据以上所述,本文给出如图10所示的设计电路,误差放大器输出电流在小电阻R6上的压降控制Q4的动态负载,当稳压器输出负载电流增大,则误差放大器输出电流增大,R18上的压降升高,而使动态负载增大,这样才能给调整管提供更大的驱动电流。此设计的误差放大器的差分输入对管与调整管同为自由集电极的纵向PNP,这使误差放大器具有高传输跨导,低输入失调[5]。
6 过温过流保护电路
过温过流保护电路对于LDO线性稳压器来说是必要的。当稳压器工作温度超过允许的最高结温时,过温保护电路使稳压器停止工作,从而不产生功耗,实现了降温,防止了稳压器烧坏;当稳压器因短路或其他原因使输出电流过大时,过流保护电路使稳压器迅速减流,以防因电流过大而使稳压器损坏。本设计中稳压器最高工作温度为125℃,输出限制电流为200 mA,电路形式如图11所示。常温下,Q12的BE结电压被设为低于他的导通压降,当温度升高时,NPN管的导通压降以约2 mV/℃下降,因此A点电位随着温度的升高而不断升高,直到Q12管导通,此时误差放大器的偏置电流,全被拉向Q12,这样误差放大器将停止工作而使调整管无驱动,输出为零。
过流保护电路与过温保护电路有点类似,在稳压器的工作电流范围内,Q11截至,当稳压器输出电流增大到200 mA时,此时调整管的基极电流将达到2 mA,电流检测电阻R7上的压降将使Q11导通,形成负反馈,把输出电流限制在这个值上。
7 结 语
LDO线性稳压器主要应用于便携式的电子产品中,而且日益广泛。CMOS型的LDO线性稳压器也正在发展中,但是他存在着CMOS工艺本身带来的弱点,而且由于PMOS调整管有较大的栅极寄生电容,使得稳定性补偿不易控制。本文从稳压器的拓扑结构入手,对每个模块都进行了详细的分析和设计,采用某双极工艺,实现的LDO线性稳压器具有低漏失电压、低静态电流特性,将具有很好的应用前景。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)