基于DSP和CAN总线的RTU的设计

基于DSP和CAN总线的RTU的设计,第1张

远程测控终端(RTU) 作为体现“ 测控分散、管理集中” 思路的产品从20 世纪80 年代起介绍到中国并迅速得到广泛应用, 应用在变电站上的RTU 主要是实现现场电力参数的远程采集与控制命令的远程发布, 并将信息或结果组装成报文, 上送到控制中心或调度端。纵观国内外的RTU 产品, 逐步从集中式控制结构向模块化、分散式、开放性的系统控制结构发展。由于变电站的数据量和信息量大, 实时性要求高, 因此将具有强大、高效的运算能力和丰富外围接口电路DSP 应用于RTU 的设计方案; 同时引入了开放性结构的CAN 现场总线引入, 运用于变电站现场数据的通信并由它组成了一个开放、可靠和实时的监控系统。

  1 系统总体结构设计

  RTU 系统采用以DSP 为微处理器、CAN 为现场通信总线的分布式模块化结构。由于分布式模块化结构易于实现功能分解, 能根据需要进行集中组拼和分散安装,因而系统具有很好的灵活性。系统结构如图1 所示。

 

基于DSP和CAN总线的RTU的设计,第2张
图1 系统结构

  RTU 可以分为通信主控模块和信号测控模块。CAN总线实现现场数据的通信。信号测控模块一方面监测远方变电站断路器开关) 位置、刀闸位置、有载调压变压器分接头的位置、事故变位信号、告警信号等( 遥信) ,同时监测主变、线路的有功功率、无功功率、电压、电流、功率因数、有功电度、无功电度、主频等( 遥测) 并转换成相应的电参量; 另一方面把上位机或调度中心下达的命令通过信号测控模块的控制信号输出端口用以控制断路器的分、合位置, 有载调压变压器的分接头位置( 遥控和遥调) 。

  考虑到RTU 的通用性和灵活性, 通信主控模块设有多种通信端口模式:

  (1)CAN 总线, 与下位信号测控模块相连实现数据的请求与命令发布;(2)RS232 端口, 实现与PC 的通信, 将RTU 处理后的数据交与PC 机作进一步处理或由PC 机实现远程 *** 作与控制;(3) 远方通信端口, 用来与远程控制中心进行通信;(4)RS485 端口, 用来实现与传统的RTU 设备或其他下位智能仪表接口相兼容。

  2 通信主控模块的硬件电路设计

  采用内置CAN 控制器的TMS320LF2407A ( 简称LF2407A) 作为通信主控模块的处理核心, 用ALTERA 公司的MAX7000S 系列的EPM7128STC100-7 CPLD 集成了处理器外围数字电路, 系统结构图如图2 所示。从功能上通信主控模块分为三个部分:CAN 总线接口部分; 并串转换部分; 键盘显示部分和掉电数据保存部分。

 

基于DSP和CAN总线的RTU的设计,第3张
图2 系统结构图

  由于LF2407A 内部集成CAN 总线控制器, 因此不必外加CAN 控制器来实现CAN 总线的底层协议, 只需在CAN 输出端子和物理通道之间加上抗干扰的光隔和CAN 总线收发器即可。光隔采用TI 的8 脚双通道高速光隔HCPL2631 ,CAN 收发器选用PHILIPS 公司的具有多种保护和抗干扰能力的PCA82C250 差动驱动器作为总线接口, 为了更好的解决射频干扰问题, 通信介质采用屏蔽电缆, 为了克服长线效应, 减小通信介质中信号的反射, 在传输线两端并联2 个120 Ω 的匹配电阻

  为了保持通信主控模块在功能上具有一定的独立性, 选择自带T6963C 控制器汉字液晶显示器模块和4个按键一起构成人机接口界面。显示器对系统的通信状态进行显示,4 个按键完成用户功能的设定, 包括模块的地址、各种通信端口的波特率等。X5045 是为了在系统掉电时将一些系统参数保存起来, 当系统再次起动时就可以重新调入这些数据。扩展的高速静态RAM 作为外部数据存储空间和调试程序存储空间。

欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/dianzi/2451250.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2022-08-04
下一篇 2022-08-04

发表评论

登录后才能评论

评论列表(0条)

保存