多晶薄膜与薄膜太阳电池

多晶薄膜与薄膜太阳电池,第1张

多晶薄膜与薄膜太阳电池
引言
    近几年来,光伏市场发展极其迅速,1997年光伏组件的销售量达122Vw,比上年增加38%。世界主要几大公司宣称,近期光伏组件产量将会增加到263.5MW,其中薄膜太阳电池将达到91.5MW,占太阳电池总量的34.7%。快速发展的光伏市场导致许多太阳电池生产厂家力求扩大生产能力,开辟大容量的太阳电池生产线。但目前太阳电池用硅材料大部分来源于半导体硅材料的等外品和单晶硅的头尾料,不能满足光伏工业发展的需要。同时硅材料正是构成晶体硅太阳电池组件成本中很难降低的部分,因此为了适应太阳电池高效率、低成本、大规模生产化发展的要求,最有效的办法是不采用由硅原料、硅锭、硅片到太阳电池的工艺路线,而采用直接由原材料到太阳电他的工艺路线,即发展薄膜太阳电他的技术。
    20世纪70年代开始,发展了许多制作薄膜太阳电他的新材料、CulnSe2、CdTe薄膜,晶体硅薄膜和有机半导体薄膜等;近20年来大量的研究人员在该领域中的工作取得了可喜的成绩。薄膜太阳电池以其低成本、高转换效率、适合规模化生产等优点,引起生产厂家的兴趣,薄膜太阳电他的产量得到迅速增长。如果以10年为一个周期进行分析,世界薄膜太阳电池市场年增长率为22.5%。BP  solar的光伏专家和企业界人士组成的一个研究组研究证明:如果一家具有60MW生产能力的薄膜电池生产厂家,使用硒钢铜薄膜太阳电池、非晶硅太阳电池、硫化铜薄膜太阳电池中的任意一种就能获得生产成本低于1欧元/瓦的无框架光伏组件,如果采用晶体硅技术实现上述同样的目标,就需要建成一家年产量达500Mw太阳电他的生产厂。因此,整个光伏市场将会逐渐被薄膜太阳电池取而代之。从技术成熟程度看,薄膜太阳电池生产仍有一定风险,但从薄膜技术不断完善和市场迅猛发展看,薄膜光伏太阳电池具有十分广阔和诱人的前景。
1.CdS薄膜与Cu2S/CdS太阳电池
   Cu2S/CdS是一种廉价太阳电池,它具有成本低、制备工艺十分简单的优点。因此,在70-80年代曾引起国内外广大光伏科研者的广泛兴趣,以空前热情进行研究。在烧结体Cu2JCdS太阳电池研究的基础上,70年代开展了在多种衬底上使用直接和间接加热源的方法沉积多晶CdS薄膜。薄膜制备方法主要有喷涂法、蒸发法等。
1.1 CdS薄膜结构特性
     CdS是非常重要的:Ⅱ-Ⅵ族化合物半导体材料。C北薄膜具有纤锌矿结构,是直接带隙材料,带隙较宽,为2.42eV。实验证明,由于CdS层吸收的光谱损失不仅与CdS薄膜的厚度有关,还与薄膜形成的方式有关。
1.2 CdS薄膜光学性质
    CdS薄膜广泛应用于太阳电池窗口层,并作为n型层,与p型材料形成p-n结,从而构成太阳电池。因此它对太阳电池的特性有很大影响,特别是对电池转换效率有很大影响。
     一般认为,窗口层对光激发载流子是死层,其原因是,(1)CdS层高度惨杂,因此耗尽区只是CdS厚度的一小部分;(2)由于CdS层内缺陷密度较高,空穴扩散长度非常短,如果耗尽区没有电场,载流子收集无效。
     因此减少缺陷密度,可使扩散长度增加,能在CdS层内收集到更多的光激发载流子。
1.3 CdS簿膜电学特性
    一般而言,本征CdS薄膜的串联电阻很高,不利于做窗口层,在300℃-350℃之间,将In扩散入CdS中,把本征CdS变成n-CdS,电导率可达102Ω-1cm-1左右。对CdS热处理也能使电导率增加108Ω-1cm-1的量级。
    在相对低温下进行热扩散,以免使膜退化。当在空气中加热到300℃时,由于氧在晶界有化学吸收,使光电导率衰减。
    未掺杂的CdS薄膜的电阻率高,不是由于膜的不连续引起的,很可能是由于氧气介入,氧俘获导带电子,形成化学吸附,存在晶界的多晶CdS薄膜更易吸收氧,在热退火过程中,消除氧的吸附作用,降低了电阻率,因此热处理不但有效地滤掉了薄膜内部的氧,而且有利于膜在优势晶向上长大。
1.4 CdS薄膜和Cu2S/CdS太阳电池的制备方法
1.4.1喷涂法
    60年代初,已有人开始采用喷涂或涂刷技术,研究CdS薄膜及Cu2S/CdS太阳电池。为了适应工业化生产CdS薄膜,R,R.Chamberlin和J.F.Jorn等人发展了这种方法。
    用喷涂法制备CdS薄膜,其方法主要是将含有3和Cd的化合物水溶液,用喷涂设备喷涂到玻璃或具有SnO2导电膜的玻璃及其它材料的衬底上,经热分解沉积成CdS薄膜。
    各国不同学者采用的工艺都基于如下热分解效应:
          CdC12+(NH2)2CS+2H20→CdS↓十2NH4Cl↑十C02↓
    热分解温度Ts>250℃。
    热分解温度、喷涂溶液组分,喷速以及SnO2透明电极的电阻率,窗口效应的利用等是影响电池性能的主要因素。
    为了制备太阳电池,在CdS膜表面喷涂转型物质,如含Cu+的氯化亚铜溶液,或采用常规浸泡工艺,使之形成一定厚度的Cu2S层,并经热扩散等工艺和喷涂金属层作电极,形成太阳电池。
    在Cu2S/CdS太阳电池中,由于两种材料的亲和力失配,相差0.3eV,因此使扩散电位被限制在0.8eV,降低了太阳电池的开路电压。为此,提出了采用由CdS和ZnS制备Cd1-XZnXS来代替CdS,以改善小层的电子亲和力和降低界面态数目。
      由于喷涂法制备Cu2S/CdS(Cu2S/Cd1-XZnXS)薄膜太阳电池,不采用真空设备,使工艺得到简化,并为定量掺杂、控制膜厚和薄膜电阻率及重现性带来方便。  1977年R.Feigllsen研制出转换效率为7.8%的Cu2SCd0.9Zn0.1S太阳电池。
1.4.2  蒸发法
    采用电子束技术蒸发CdS原料油于装料器外壳不加热,并进行水冷,因而减少了污染,获得的膜牢固、致密、纯度高、耐腐蚀性好、剩余原料组分不变,可以循环使用。因此该方法获得了广泛应用。
    长春应化所张瑞峰等人用电子束蒸发制备CdS薄膜,改进了电子束蒸发设备,避免了在蒸发过程中CdS粒子飞溅。采用常规氯化亚铜浸泡法形成Cu多层,从而构成Cu2S/CdS太阳电池,电池最佳转换效率为6.2%。
     真空加热蒸发制备CdS薄膜是常采用的方法。长春应化所王福善等人用石墨作加热器,调节源上方挡板的大小和位置,获得无溅射颗粒的CdS薄膜,并用氯化亚铜水溶液浸泡形成Cu2S层,构成Cu2S/CdS太阳电池,其最高效率为7.8%。
     长春应化所王给祥等人,改进了蒸发工艺,对Cu2S层进行HCI腐蚀,使表面形成绒面织构,所获得的Cu2S/CdS太阳电池最佳有效面积转换效率为8.9%。
1.5  Cu28/CdS太阳电池机理研究
      由于Cu2S/CdS薄膜太阳电池工艺不稳定,电池转换效率不高,稳定性差,易衰降,因此阻碍了这一类型太阳电池的发展。为此许多学者对这种电池开展了深入细致的机理研究。上海能源所黄芳龙用扫描电子能谱仪测量了不同效率的薄膜Cu2S/CdS太阳电他的AES谱。认为真空蒸发形成CdS膜和化学浸泡法形成Cu2s层构成的Cu2S/CdS电池为缓变结电池,高浓度Cu2S区厚0.05µm-0.1µm,铜过渡区厚度为1µm,在一定的结深和过渡区范围内,电池效率与高浓度Cu2S层厚度(结深)成正比,与铜过渡区厚度成反比,并计算出电他的极限效率为18%,实际工艺可能达到12.5%。黄芳龙进一步研究了扩散对Cu2S/CdS太阳电池效率及稳定性的影响。扩散会改变电池各元素的组成比,导致电池效率下降,特别是封装材料中C和Cu2S层中Cu的扩散最甚。因此选择无机材料作为封装材料和在Cu2S层中加入作为间隙原子的其它材料或选用其它材料如CulnSe2、CdTe等代替Cu2S层。由此Cu2S/CdS这种结构的太阳电池,逐渐失去人们的兴趣。
2 .CulnSe2多晶薄膜材料与CdS/CulnSe2太阳电池
2.1  CUInSe2薄膜材料的结构特性
    Cu1nSe2(CIS)是一种三元Ⅰ-Ⅲ-Ⅵ2族化合物半导体,具有黄铜矿、闪锌矿两个同素异形的晶体结构,其高温相为闪锌矿结构(相变温度为980°C),属立方晶系,布拉非格子为面心立方,晶格常数为α=5.86×10-8cm,密度为5.55g/cm3其低温相是黄铜矿结构(相变温度为810°C),属正方晶系,布拉非格子为体心四方,(d•c•t),空间群为I 42d=D2d12,每个晶胞中含有4个分子团,其晶格常数为α=5.782×l08cm,с=11.621×10-8cm,与纤锌矿结构的CdS(α=4.613×10-8cm,с=7.16×l0-8cm)晶格失配率为1.2%。这一点使它优于CulnSe2等其它Cu三元化合物。
    Cu1nSe2是直接带隙半导体材料,77K时的带隙为Eg=1.04eV,300K时Eg=1.02eV,其带隙对温度的变化不敏感。
    1.04eV的禁带宽度与地面光伏利用对材料要求的最佳带隙(1.5eV)较为接近,但这一点劣于CulnSe2(Eg=1.55eV)。
    Cu1nSe,的电子亲和势为4.58eV,与CdS的电子亲和势(4.50eV)相差很小(0.08eV),这使得它们形成的异质结没有导带尖峰,降低了光生载流子的势垒。
2.2  CulnSe2材料的光学性质
    Cu1nSe2具有一个0.95eV-1.04eV的允许直接本征吸收限和一个1.27eV的禁带直接吸收限,以及由于以w一Redfiled效应而引起的在低吸收区(长波段)的附加吸收。
    Cu1nSe2材料具有高达以=6×10cm-1的吸收系数,这是到目前为止所有半导体材料中的最高值。但是关于Cu1nSe2为什么会有这样高的吸收系数,其机理尚不完全清楚。具有这样高的吸收系数,亦即这样小的吸收长度(1/α),对于太阳电池基区光子的吸收、少数载流子的收集,因而也即对光电流的收集产生了非常有利的条件。这也就是CdS/Cu1nSe2太阳电池会有39mA/cm2这样高的短路电流密度的原因,这样小的吸收长度,使薄膜的厚度可以很薄,而且薄膜的少数载流子扩散长度也是很容易超过1/α,甚至对结晶程度很差或者多子浓度很高的材料,其扩散长度也容易超过V0、Cu1nSe2的光学性质主要取决于材料的元素组份比、各组份的均匀性、结晶程度、晶格结构及晶界的影响。大量实验表明,材料的元素组份与化学计量比偏离越小,结晶程度好,元素组分均匀性好,温度越低其光学吸收特性越好。具有单一黄铜矿结构的Cu1nSe2薄膜,其吸收特性比含有其它成份和结构的薄膜要好。表现为吸收系数增高,并伴随着带隙变小。
    富cu的薄膜比富1n的薄膜吸收特性好,原因是富Cu的薄膜比富In的薄膜的结晶程度好。沉积衬底温度高的(770K)富Cu薄膜比沉积衬底温度低的(570K)薄膜的吸收特性好1原因是前者具有单一的黄铜矿结构,而后者不具有。
    室温(300K)下,单晶Cu1nSe2的直接带隙为0.95eV-0.97eV。多晶薄膜为1.02eV,而且单晶的光学吸收系数比多晶薄膜的吸收系数要大。引起这一差别的原因是由于单晶材料较多晶薄膜有更完善的化学计量比,组份均匀性和结晶好。在惰性气体中进行热处理后,多晶薄膜的吸收特性向单晶的情况靠近,这说明经热处理后多晶薄膜的组份和结晶程度得到了改善。然而,有人认为这种差别是由于膜中价带边的界面态和晶粒间界的原因造成。
     吸收特性随材料工作温度的下降而下降,其带隙随温度的下降而稍有升高。当温度由室温300K降到10DK时,Eg上升0.02eV,即100K时,单晶CulnSe2的带隙为0.98eV,多晶CulnSe2的带隙为1.04eV。
     不论单晶或多晶在低吸收区出现一个尾巴,即出现了附加吸收区,该区中使得α2-hv不再为直线,不再遵从允许直接跃迁的ahv-A(hv-Eg)½这一关系。
     对于单晶,这一现象由于伴随着声子吸收的跃迁产生,这种跃迁遵守α=A'(hv-Egi+Ep)2/[exp(Ep/kT)-1],其中A'为常数,Ep为声子能量,Egi为间接带隙。
     对于多晶薄膜,上述两种α~hv关系都不成立,这种附加吸收可能是由于Dow-Redfiled效应引起的。
2.3 CulnSe2材料的电学性质
      CulnSe2材料的电学性质(电阻率、导电类型、载流子浓度、迁移率)主要取决于材料的元素组份比,以及由于偏离化学计量比而引起的固有缺陷(如空位、填隙原子、替位原子),此外还与非本征掺杂和晶界有关。
2.3.1 导电类型
     对材料的元素组份比接近化学计量比的情况,按照缺陷导电理论,一般有如下的结果:当Se不足时,Se空位呈现施主;当Se过量时,呈现受主;当Cu不足时,Cu空位呈现受主;当Cu过量时,呈现施主。当In不足时,In空位呈现受主。当In过量时,呈现施主。
     在薄膜的成份偏离化学计量比较大的情况下,情况变得非常复杂。因为这时薄膜的组份不再是具有单一黄铜矿结构的CulnSe2,而包含其它的相(Cu2S2、Cu2-xSe、In2Se3、InSe…)。在这种情况下,薄膜的导电性主要由Cu/In比决定,一般随着Cu/In比的增加,其电阻率下降,p型导电性增强。导电类型与Se浓度的关系不大,但是p型导电性随着Se浓度的增加而增加。
2.3.2 薄膜导电性对元素组份比的依赖
      实验证明,CulnSe2薄膜的导电性与薄膜的成份有如下关系:
      1)当Cu/In>1时,不论Se/(Cu+In)之比大于还是小于1,薄膜的导电类型都为p型,而且具有低的电阻率,载流子浓度为1016-1020cm3但是当Se/(Cu+In)>1时,发现有Cu2-xSe存在。
      2)当Cu/In<1,若Se/(Cu+In)>1时,则薄膜为p型,具有中等的电阻率,或薄膜为n型,具有高的电阻率。若Se/(Cu+In)<1,则薄膜为p型,具有高的电阻率,或薄膜为n型,具有低的电阻率。其中当Cu/In<1且Se/(Cu+In)<1时的高阻p型薄膜已在实验中获得了高效电池(10%)。
2.4.CulnSe2薄膜生长工艺
      Cu1nSe2薄膜的生长方法主要有:真空蒸发法、Cu-In合金膜的硒化处理法(包括电沉积法和化学热还原法)、封闭空间的气相输运法(CsCVT)、喷涂热解法、射频溅射法等。
2.4.1单源真空蒸发法
     首先用元素合成法制备CulnSe2源材料。制法是,按化学计量比称取高纯的(5N)Cu、In、Se2粉未。一般Se稍过量(0.02at%)以获得p型材料,将源料放入一端封闭的石英管中,然后抽真空,当真空度到1.  33X10-3pa以上时,将石英管封闭,制成一个安瓶,放入烧结炉中,缓慢加热到D50C进行合成。源料要求具有单一黄铜矿结构,且为p型。
     CulnSe2源材料的合成,也可先合成CuSe和In2Se3,然后再将适量CuSe和In2Se3进行合成以获得CulnSe3。
     将合成的多晶CulnSe2源材料经仔细研磨后,用电子束或电阻加热器进行蒸发,以获得薄膜。
     直接用满足化学计量比的CulnSe2材料作蒸发源,所得薄膜一般为n型,如果在源中加入适量Se(20wt%)则可获得p型薄膜,衬底温度一般控制在200°C~300°C之间,以250°C为佳。此法的优点是,设备简单,缺点是不易控制组份和结构。
2.4.2双源真空蒸发法
      一个源中放入用元素合成法制得的CulnSe2粉未作为主要蒸发源,另一个源中放入元素Se,以控制薄膜的导电类型及载流子浓度。分别控制两源的蒸发速率,即可获得理想的薄膜,衬底温度一般在200℃-350℃之间。此法较单源法易于控制薄膜的成份和结构。
2.4.3三源真空蒸发法
    将高纯的Cu、In、Se分别放入三个独立的源中,并用相应的传感器系统,监视各自的蒸发速率,然后反馈到各自的蒸发源控制器中,控制各自的蒸发速率,从而获得理想的薄膜。
    衬底温度一般在350℃-450℃之间。此法优点是,易于控制组份和结构,且较前2种方法,不用合成CulnSe2源料,缺点是,设备复杂,此法是当前应用最广、研究最多的方法。
2.4.4封闭空间气相输运法(CsCVT)
    用元素合成法制备近似满足化学计量比的p型CulnSe2多晶晶块作为输运源料,用碘或碘化氢气体作为输运剂,以铝片、石墨片、w/A12O2或MO/玻璃作衬底,在封闭系统中进行蒸发。  CulnSe2与碘的可逆反应为:
     ,即固体的CulnSe2在高温下与碘蒸气发生反应,生成蒸气压高的Cu1、InI及Se2气体。上述反应是可逆的。当温度高时反应由左向右进行,当温度低时,反应由右向左进行。
    所以如果在源和衬底间保持一个温度梯度,使得在源上反应是从左到右,而在衬底上反应由右向左,则便可将CuInSe2源输运到衬底上,形成CuInSe2薄膜。
    HI也可用作输运剂,因为在高温下,HI分解为碘蒸气和氢气。
    输运系统主要参数为,衬底温度为500℃-600℃,源温为500℃-600℃,衬底与源温差为20℃-30℃之间,间距为1mm,碘蒸发压为2.67Pa-4.00Pa。该法的优点是,设备较简单,源利用率高,成膜质量好。缺点是,膜中有碘杂质存在。
2.4.5化学热还原法沉积Cu-In合金膜再进行硒化处理
    利用铜、钢的盐和氧化物在高温氢气氛中还原淀积Cu-In合金膜,然后在H2土气氛中进行硒化处理,便可得CulnSe2薄膜。
    可用于热还原的Cu、In化合物必须满足如下条件:其还原温度必须低于蒸发温度,其次可以配成溶液。
    实验证明,铜、钢的硝酸盐和氧化物是可行的,将Cu(NO3)2和In(NO3)3溶于甲醇中,控制各自的浓度,使混合溶液具有合适的Cu/In含量比,然后将这种混合溶液均匀涂于MO/玻璃或w/Al2O3衬底上,经干燥后放入炉中,在氢气中进行还原,一般衬底温度先保持在250℃-300℃之间,硝酸盐分解为氧化物,氧化铜还原为铜,然后再提高温度到550C,氧化钢还原这In,从而获得Cu-In合金膜。控制溶液中的Cu/In比和还原温度,即可得到合适的Cu/In合金膜。
    这种方法对于Cu、In化合物的用量是很少的,一般在一平方厘米的衬底上淀积1µm厚的各种金属膜,分别需要1.4×1O-5mol的铜化合物和6.36×1O-6mol的钢化合物。将用上述方法沉淀的Cu-1n合金膜在H2十H2h气氛中进行热处理,便可得到CulnSe2膜。
    一般用90%H2+10%H2众进行处理,流量为10ml-30m1/min,时间为30min-100min,硒化温度在400℃左右,在硒化过程中,因为In2Se3在400℃下便会蒸发,故沉淀富钢的Cu-In合金膜是必要的。此法的优点是,原料的利用率高,工艺简单,便于降低成本。
2.4.6电镀法沉淀Cu-In合金膜再进行硒化处理
    用铜、钢的盐溶液作为电镀液,用Cu或In或Cu-In合金作为阳极,导电衬底为阴极,在适当的浓度、温度、电流密度、pH值和搅拌条件下即可电镀。衬底一般用MO/玻璃。薄膜的均匀性一般受阳极、衬底(阴极)和镀槽的几何形状的影响。为了获得均匀的膜,要求上述装置具有对称性。薄膜与衬底的结合性与衬底表面的光洁度有关。
2.4.7电沉积叠层结构再硒处理
    按上述方法在衬底上先沉积一层Cu,然后再沉积一层In,形成叠层结构,即In/Cu/MO/玻璃结构,然后硒处理。也可以沉积各种各样的多层结构,如In/Cu/In/Cu…MO/玻璃。
    也可以在衬底上分别层积Cu、h、Se层结构,最后在硒气氛中或非硒气氛中热处理而得Cu1nSe2薄膜。
2.4.8喷涂热解法和溅射法
    可参考有关文献,这里不作详细介绍。
2.5. CdS/CulnSe2薄膜太阳电池
      由于CulnSe2薄膜材料具备十分优异的光伏特性,20年来,出现了多种以Cu1nSe2薄膜材料为基础的同质结和异质结太阳电池。主要有n-CulnSe2/p-CulnSe2、(InCd)S2/CulnSe2、CdS/CulnSe2、ITO/Cu1nSe:、GaAs/CulnSe2、ZnO/CulnSe2等。在这些光伏器件中,最为人们重视的是CdS/CulnSe2电池,所以这里主要以CdS/CulnSe2电池为例,对其结构和光伏性能作一些描述。
2.5.1 In-CdS/p-CulnSe2太阳电池
    一般由低阻的n型CdS和高阻p型CulnSe,组成,这种结构的电池一般有较高的短路电流Isc,中等的开路电压Voc和较低的填充因子FF。
    为了进一步提高该种结构电他的性能,首先必须降低电池的串联电阻,因此要降低CdS层的电阻,或者大幅度降低CulnSe2层的电阻,而保持CdS层高阻。然而,大幅度降低Cu1nSe2的电阻,同时又要保证具有单一物相的材料是很困难的,而在CulnSe2上生长低阻的CdS也是困难的,特别是电阻率小于1Ω•cm的CdS层几乎不可能。因此该种结构电他的性能未能得到大的突破。
2.5.2  pin型CdS/CulnSer太阳电池
    为了获得性能较好的CdS/CulnSe2电池,需要形成低阻(<50kΩ/ □)CulnSe2层,实验发现,低阻CulnSe2材料与CdS接触时,在界面处会产生大量铜结核。结核的产生使电他的效率大为降低。pin型CdS/CulnSe2电池解决了这一问题。
    i层由高阻的n型CdS和高阻的P型CulnSe2组成,避免了Cu结核的形成。n层由低阻的n型CdS形成,具有较低的体电阻,而且与上电极的接触电阻也较小。p层由低阻的p型CulnSe2组成,同样具有较低的体电阻和背接触电阻,而且由于和高电阻p型层形成了背场,有利于Voc的提高。
2.5.3 (ZnCd)S2/CulnSe2太阳电他
     为了进一步提高电他的性能参数,以ZnxCd1-x代替CdS制成ZnxCd1-xS/CulnSe2太阳电池。 ZnS的掺入,减少了电子亲和势差,从而提高了开路电压,同时提高了窗口材料的能隙Eg,改善了晶格匹配,从而提高了短路电流Isc。
2.6国外CulnSe2薄膜太阳电池发展情况
    许多大公司已开始大规模地实施制造薄膜太阳电池的计划。最近西门子公司已向美国可再生能源实验室(NREP)提供了由28个39W组件构成的lkW薄膜太阳电池方阵,其中最好的组件经美国国家可再生能源实验室确认,面积为3665cm2,输出功率达到40.6W,转换效率为11.1%,这一光伏方阵体现了薄膜技术优异的性能——高效率、低成本、高稳定和大面积。美国国家可再生能源实验室研究的含嫁的硒钢铜薄膜太阳电池(CIGS),其转换效率达到18.8%。从中可以看到C1S薄膜技术突飞猛进的发展。
2.7国内CulnSe2薄膜太阳电池发展情况
    我国的CulnSe2薄膜太阳电池研究始于80年代中期。内蒙古大学、南开大学、云南师范大学、中国科学院长春应用化学研究所等单位先后开展了这项研究。1986年长春应用化学研究所用喷涂法制备了C1S薄膜。薄膜具有黄铜矿结构,并制备了全喷涂C1S/CdS太阳电池,电池具有光伏效应。1990年内蒙古大学采用双源法,研制了pin  CdS/CulnSe2薄膜太阳电池,经天津电源研究所测试,面积为0.9cm×0.9cm,效率为8.5%。南开大学采用蒸发硒化法制作CulnSe/C北薄膜太阳电池,面积为0.1cm2和lcm2的太阳电池,其效率分别达到7.62%和7.28%,5cm×5cm电他的平均效率为6.67%。
    我国该技术仍处于实验室阶段,而且处于较低的水平,投入很少,进展缓慢。因此,急需加快研究和开发力度,加大对薄膜太阳电他的投入,尽快向工业化生产过渡,将薄膜太阳电池作为21世纪优先发展的高科技项目。近期内,对CulnSe2薄膜太阳电池的研制,通过控制Se、In、Cu三元素配比和蒸发速率,以获得重复性好、化学计量比符合要求,具有黄铜矿结构的硒钢铜薄膜,用化学成膜法制备致密和均匀的CdS薄膜,用溅射法制备ZnO薄膜。期望近期内,光伏转换效率能达到10%左右,为21世纪大规模发展Cu1nSe2薄膜太阳电池奠定基础。
3.多晶薄膜CdTe材料与CdTe/CdS太阳电池
      在薄膜光伏材料中,以CdTe为基体的薄膜光伏器件,在光伏科技界具有极大的吸引力。CdTe已成为人们公认的高效、稳定、廉价的薄膜光伏器件材料。CdTe多晶薄膜太阳电池转换效率理论值)在室温下为27%,目前已制成面积为lcm2,效率超过15%的CdTe太阳电池,面积为706cm2的组件,效率超过10%。从CdTe多晶薄膜太阳电他目前已达到的转换效率、可靠性和价格因素等方面看,它在地面太阳光伏转换应用方面,发展的前景极为广阔。
3.1薄膜材料的制备方法
    制备CdTe薄膜方法主要有:(1)CsS,(2)电镀,(3)丝网印刷,(4)化学气相沉积CVD,(s)物理气相沉积PVD,(6)MOCVD,(7)分子束外延MBE,(8)ABE,(9)喷涂,(10)溅射,(11)真空蒸发,(12)电沉积等。
    CSS方法制备CdTe薄膜的优点是,蒸发材料损失少,结晶方向好,光伏特性优良。在沉积过程中引入少量的氧,加强了CdTe的p型特性。用CSS方法制备的小面积单体CdTe电池最高效率达到15.8%,最好的大面积(6728cm2)CdTe电池,有效面积效率为9.1%。制作大面积、廉价的CdTe太阳电池,电镀方法很有潜力。
3.2结构特性
    CdTe是Ⅱ-Ⅵ族化合物,是直接带隙材料,其带隙为1.45eV,它的光谱响应与太阳光谱十分吻合。电子亲和势很高,为4.28eV。具有闪锌矿结构的CdTe,其晶格常数α=1.6477×l0-8cm,不同的制备方法其结构特性有一定的差异。
3.3光学特性
      由于CdTe膜具有直接带隙结构,所以对波长小于吸收边的光,其光吸收系数极大,厚度为1µm的薄膜,足以吸收大于CdTe禁带能量的辐射能量的99%,因此降低了对材料扩散长度的要求。
    在薄膜沉积过程中,沉积参数对热蒸发方法获得的CdTe薄膜的光吸收有影响。对于不同厚度的CdTe薄膜,吸收系数随吸收限和吸收限附近入射光子能量而变化。实验表明,膜越薄,吸收系数越高,带边与膜厚度无关。薄膜的吸收系数与生长温度有关,衬底温度在较低温度范围内,尤其是衬底温度小于150°C时,吸收系数较小。当衬底温度大于200°C时,沉积膜的吸收系数随衬底温度的变化不明显。当衬底温度从20℃增加到250°C时,吸收边从1.40eV变化到1.48eV。
     沉积速率和吸收边的关系为,沉积速率增加,薄膜吸收系数变化不大,而且所有薄膜有相同的吸收边。
3.4  电学特性
      CdTe为Ⅱ-Ⅵ族化合物半导体,其结构与Si、Ge有相似之处,即其晶体主要靠共价键结合,但又有一定的离子性,因此与同一周期的W族半导体相比,CdTe的结合强度很大,即其电子摆脱共价键所需能量更高。因此,常温下,CdTe的导电性主要由掺杂决定。薄膜组份、结构、沉积条件、热处理过程对薄膜的电阻率和导跑类型有很大影响。
      用CSS法制备的CdTe薄膜,当衬底温度升高时,薄膜串联电阻降低2个数量级,这是由于沿H<002>、C<111>优势晶向的增长和晶粒尺寸的增加,引起自由载流子迁移率增加的结果。
      当蒸发温度由550°C增加到650°C时,所获得的薄膜晶粒尺寸减小,使薄膜的串联电阻增加。当蒸发温度高于650°C时,电子输运沿H<002>、C<111>优势晶向和晶粒尺寸的增加占主要地位,这时由于迁移率增加,从而引起薄膜串联电阻下降。实验结果表明,薄膜的串联电阻的最大变化是由氧偏压和豚衬底间距引起的。
只有适当的氧偏压和源一衬底间距,才能使薄膜串联电阻从7×108Ω(1.4×104Ω.cm)变化到2×102Ω(0.4Ω•cm)。同样,增加氧偏压,减小源-衬底间距也能使电阻率降低。另一方面,反应室内氧偏压也能增加电导率,因为氧气与Te反应生成TeO2,而TeO2由泵系统从反应室中排除,这有利于生成富Cd层的CdTe。
      CSS制作CdTe时,氧很重要。氧使吸收体内受主密度增加,CdTe成核位置密度增加,针孔密度减小,晶粒尺寸减小,另一方面,在CSS沉积CdTe过程中,因为在氧中沉积引起CdTe膜不均匀氧化,造成源流量减少。氧在CdTe膜上引起的表面形貌有0.5-10µm的高度,这是源材料通过粒子反射引起的,这些影响使器件的效率降低。
3.5 CdTe/CdS太阳电池
      CdTe/CdS薄膜太阳电他的理论值为,开路电压1050mV,短路电流30.8mA/cm2,填充因子83.7,转换效率~27%。
      表:列出了比较典型的制备的CdTe/CdS太阳电池和组件的性能,同时列出了相应的研究组织。所有高效CdTe/CdS太阳电池都采用上覆盖器件结构。下面详细介绍几种制备方法和电池性能。
        
3.5.1 丝网印刷烧结法
      丝网印刷烧法具有工艺简单,生产速度快,易于大面积制作,掺杂容易,成本低等优点。目前利用此方法制作的CdS/CdTe太阳电池,面积为4.6cm2,效率12.8%,30cm×30cm面积电池的效率为8.5%。
      CdS/CdTe太阳电池是在玻璃衬底上分别印刷烧结一层n-CdS和p-Cdh薄膜构成。首先将经过焙烧挥发去除杂质的CdS粉未研磨成小颗粒,烘干后再加入12%重量的CdCl2助溶剂,用丙二醇调制成CdS膏浆。用涤纶或尼龙丝网将CdS浆印刷在玻璃衬底上并烘干。印刷好的CdS膜在N2气中680C下,烧结30min左右即可完成CdS薄膜的制备。接着在CdS薄膜上制备CdTe薄膜。类似于CdS薄膜,将相同重量的Cd和Te粉加入0.5%重量的助溶剂CdCl2和适量丙二醇制成(Cd+Te)膏浆,然后用尼龙丝网将此膏浆印刷于CdS膜上。在N2气中620℃下烧结60min后,便形成CdTe膜。最后是制备电极。在CdTe膜上,通过印刷和烧结碳形成电极。p-CdTe是用Cu作掺杂剂形成的。在选用的碳膏中含有50×l0-6的Cu,在300℃下烧结碳电极的同时,其中的Cu向CdTe中扩散使其成为p型。于是n-CdS与其上的p-CdTe便形成了p-n结。还需要在CdTe膜的碳电极上印刷银膏作为上电极。
      用丝网烧结制备CdS/CdTe异质结太阳电池过程中,这个体系发生了十分复杂的物理和化学变化。产生了许多气态和固态的副产物,这样使得工艺条件难以控制,从而影响工艺重现性和太阳能电池性能的稳定性。
3.5.2周期性电脉冲沉积法
     用周期性脉冲电化学沉积技术制备Cds/CdTe太阳电池有以下优点:(1)可将膜沉积到所要求的衬底材料上,所以能大大降低材料成本;(2)所用设备简单便宜;(3)对一转换效率大于10%的太阳电池,同种溶液可长期使用,一般可用8-9个月;(4)由于沉积参数易于控制,薄膜质量的重现性很好;(5)能很好地控制U、Te和5的比例,并能获得高纯度薄膜材料。
     CdS膜的电镀液是将分析纯的CdCl2和高纯水(18MΩ•cm)制成含有0.2MCd2+的溶液,在90℃和5mV电位下电纯化12h之后,加入硫化钠形成0.01MS2032-溶液,并加入HCI使pH值达到2,衬底材料为FTO/玻璃,方波脉冲电源加于溶液槽中正负电极上。阳极电位为+0.6V(SCE)。脉冲时间2s,阴极电位0.955V(对SCE),脉冲时间1s。沉积2h后,衬底上呈现100nm~110nm原黄色CdS膜。  CdTe溶液是用分析纯C北和高纯水制成2.5MC2+溶液,并在10mV电位下电纯化12h,加入H2SO4调节pH值达到2。在溶液中加入光谱纯的Te棒,然后使溶液中HTeC矿浓度达到120×l06,分别加入脉冲宽度为1s,电势为+0.4V和一0.75V于溶液电极上,经过90min电沉积,2;Lm厚的CdTe便在衬底上产生。
     将制备好的玻璃/FTO/CdS/CdTe很快地(约为1s)转移到高纯水(约90℃)中,并缓慢地冷却到室温。然后将此样品用氮气冲干,并在真空中(1.33Pa)保持12h。接着在空气中400℃下退火处理15min后,CdS/p一CdTe异质结太阳电池便形成了。再利用比例为1:=的碳酸与铬酸钾溶液腐蚀2s,用高纯水漂洗数次烘干即可蒸发铜和金电极。
     利用此方法制备CdS/CdTe太阳电池,转换效率约为10.8%,开路电压Voc≈753mV,短路电流Isc≈23.6mA/cm2,填充因子FF≈0.61。电脐电压。温度曲线测量表明,理想因子A随温度而变。当温度从344K变到202K时,A从1.88增加到4.49。而电压因子以在约6K以上几乎是常数。通过电容电压特性测量可知扩散势为1.2eV,电离电荷密度为5.9×1015cm-3。从开路电压随温度变化特性测出势垒高度为1.42V。
3.5.3高温喷涂法
     高温喷涂法是将CdCl2和硫豚溶液喷涂在加热的衬底上形成n-CdS膜。衬底一般用p-CdTe单晶材料。衬底加热到450C便形成n-CdS/p-CdTe异质结太阳电池,其转换效率大子6%。热处理后能改变太阳电他的性能,例如在420C下氢气中处理5min后,它的开路电压由原来0.55V增加到0.66V,短路电流由 1.77mA/cm2增加到9.08mA/cm2。
3.5.4高效多元化合物叠层多结太阳电池
      为了提高转换效率,将CdTe、CdS和CulnSe2用Zn、Hg、Mn和Ga等取代Cd、In制成CdHgTe、CdZnTe、CdZnS和CuGaSe2等太阳电池。如CdHgTe/CdS和SnO2/CdTe太阳电池,其效率已达10%。这些新材料带隙不同并随成份改变而改变。最近发展起来的一种按带隙大小排列的叠层电他,其效率大为提高。
如果顶端带隙最大向下排列得到二电池的叠层电池理论效率可达37%,三电池达40%。
     制备CdTyCdS太阳电池时,常发生互扩散,Te扩散入CdS层中形成CdS1,它具有纤锌矿结构,带隙小于CdS,Te扩散进窗口层降低了器件的Jsc,相似S扩散入CdTe内形成具有纤锌矿结构合金CdTe1-xSx, 带隙小于CdTe,CdTe/CdS内表面互扩散效应,对太阳电池效率是否有利尚不明确。
3. 6 环境与安全
      大规模使用CdTe光伏技术的一大障碍和Cd的毒性有关。有效地处理废弃和破损的CdTe组件,技术上很简单。而Cd是重金属,有剧毒,Cd的化合物•与Cd一样有毒。主要危险是其尘埃通过呼吸造成对人类和其它动物的危害。因此对破损的玻璃片上的Cd和Te应去除并回收。损坏或废弃的组件必须妥善处理或用60%H2SO4+1.5%H202处理。
3.7国内外发展现状与趋势
     CdTe薄膜太阳电池是薄膜太阳电池中发展较快的一种光伏器件。 1998年第二届世界光伏太阳能转换会议上,日本Matsushita  Battery报道了CdTe太阳电池转换效率达到16.0%,Siemens报道了面积为3600cm2电池转换效率达到11.1%的水平。美国国家可再生能源实验室提供了Solar  Cells  lnc的面积为 6879cm2CdTe薄膜太阳电池的测试结果,转换效率达到7.7%;Bp  Solar的CdTe薄膜太阳电池,面积为4540cm2,效率为7.8%,面积为706cm2的太阳电池,转换效率达到10.1%;Goldan  Photon的CdTe太阳电池,面积为3676cm2,转换效率为7.7%。
    在广泛深入的应用研究基础上,国际上许多国家的CdTe薄膜太阳电池已由实验室研究阶段开始走向规模工业化生产。1998年美国的CdTe电池产量为0.2MW,日本的CdTe电池产量为2.0MW。德国ANTEC公司将在Rudisleben建成一家年产10MW的CdTe薄膜太阳电池组件生产厂,预计其生产成本将会低于$1.4/w。该组件不但性能优良,而且生产工艺先进,使得该光伏组件具有完美的外型,能在建筑物上使用,既拓宽了应用面,又可取代某些建筑材料而使电池成本进一步降低。BP  Solar公司计划在Fairfield生产CdTe薄膜太阳电池。而Solar  Cells公司也将进一步扩大CdTe薄膜太阳电池生产。
    我国的CdTe薄膜太阳电池仍处于实验室基础应用研究阶段。有关CdTe薄膜太阳电池研究,除了内蒙古大学对电沉积n一CdTe薄膜的研究报道外,很少有这一领域的研究报道。今后我国在CdTe薄膜太阳电池领域应加大研究和开发力度,尽快向工业化生产发展,重点将在以下几个方面进行:研究CdS化学沉积方法及处理技术;CdTe的近空间升华沉积技术;Cu掺杂ZnTe蒸发设备及沉积技术。以期获得性能良好的 CdTe/Cds太阳电池,在近期内小面积CdTe/CdS薄膜太阳电他的转换效率力争达到13%,以缩短和世界水平的差距。
4 .晶体硅薄膜的制备方法及晶体硅薄膜太阳电池
    为了进一步降低晶体硅太阳电池的成本,近几年来,各国光伏学者发展了晶体硅薄膜太阳电池。即将晶体硅薄膜生长在低成本的衬底材料上,用相对薄的晶体硅层作为太阳电他的激活层,不仅保持了晶体硅太阳电他的高性能和稳定性,而且使硅材料的用量大幅度下降,明显地降低了电池成本。利用晶体硅薄膜制备太阳电池的基本要求为:(1)晶体硅薄膜厚度为5-150µm;(2)增加光子吸收;(3)晶体硅薄膜的宽度至少是厚度的一倍;(4)少数载流子扩散长度至少是厚度的一倍;(5)衬底必须具有机械支撑能力;(6)良好的背电极;(7)背表面进行钝化;(8)良好的晶粒间界。
4.1 晶体硅薄膜的制音方法
4.1.1  半导体液相外延生长法(LPE法)
    LPE法生长技术已广泛用于生长高质量的外延层和化合物半导体异质结构,如GaAs、AIGaAs、Si、Ge、siGe等。LPE可以在平面和非平面衬底上生长,能获得结构十分完美的材料。用LPE技术生长晶体硅薄膜来制备高效薄膜太阳电池,近年来引起了广泛兴趣。
    LPE生长可以进行掺杂,形成n-型和p-型层,LPE生长设备为通用外延生长设备,生长温度为300°C-900°C,生长速率为0.2µm-2µm/min,厚度为0.5µm-100µm。外延层的形貌决定于结晶条件,并可直接获得具有绒面织构表面的外延层。
4.1.2  区熔再结晶法(ZMR法)
    在硅(或其它廉价衬底材料上)形成SiO,层,用Lp-CVD法在其上沉积硅层(3µm-5µm,晶粒尺寸为0.01-0.µm),将该层进行区熔再结晶(ZMR)形成多晶硅层。
    控制ZMR条件,可使再结晶硅膜中的腐蚀坑密度由1×I07cm-2下降到1-2×106cm-2,同时(100)晶相面积迅速增加到90%以上。为了满足光伏电池对层厚的要求,在ZMR层上用CVD法生长厚度为50µm-60µm的硅层作为激活层,用扫描加热使其晶粒增大至几毫米,从而形成绝缘层硅结构(SOI),激活层为p
型,电阻率为1Ω•cm-2Ω•cm。为获得高质量的激活层,在进行Lp-CVD前,对ZMR层表面进行HCI腐蚀处理。
    为制备多晶硅薄膜太阳龟池,在激活层表面进行腐蚀形成绒面织构,并在其上进行n-型杂质扩散形成p-n结,然后进行表面钝化处理和沉积减反射层,并制备上电极,进行背面腐蚀和氢化处理,制作背电极,即制成多晶硅薄膜太阳能电池。
    上述结构不但有效地降低串联电阻,还能增加背反射。在10cm×10cm面积上获得转换效率为14. 22%的多晶硅薄膜太阳电池。
4.1.3 等离子喷涂法(PSM)
    采用DC一RF混合等离子系统。以纯度为99.9999%,粒度为50µm一150µm的p-型晶体硅粉作为原材料,用Ar气作为携带气体,由DC-RF等离子体进行喷涂。原料贮存盒和携带气体管道涂覆Si-C-N-O化合 物,防止金属杂质污染。
    硅粉在高温等离子体中加热熔化。熔化的粒子沉积在衬底上,衬底由加热器加热,沉积前,用红外热偶测试衬底温度,使之保持在1200℃,沉积室由不锈钢制成,用无油泵抽真空,其真空度为1.33×10-2pa。等离子体由Ar和少量H构成,沉积时压强为8×10-8pa。沉积的多晶硅膜厚度为200µm-1000µm。多晶硅晶粒尺寸为20µm-50µm,沉积速率大于10µm/s。
    用等离子体喷涂沉积多晶硅薄膜太阳电池,全部采用低温等离子CVD工艺。用碱或酸溶液腐蚀沉积的多晶硅层,在其上于200℃用等离子CVD形成厚度约200×10-8cm的微晶硅作为发射层,并制备ITO减反射层和银浆电极构成太阳电池。面积为lcm2,在AM1.5、100mW/cm2条件下,电他转换效率为了η=4.3%。
4.1.4叠层法
    在较低的温度300℃下,用叠层技术,在经预先氟化处理的玻璃衬底上沉积多晶硅薄膜,该方法类似于沉积a-Si:H薄膜。在低温下用等离子增强化学气相沉积法(PELVD)沉积大面积多晶硅薄膜。
    一般,p。型掺杂多晶硅薄膜用叠层技术沉积,其厚度为0.28mm~5.78mm。典型的沉积条件为:SiF4流量为60SCCm,氢流量为15SCCm,沉积温度为300℃,微波功率为200W,压强为53.3Pa。进行卜型掺杂沉积时,在氢气中混合10ppmPH3,流量为18SCCm。每次沉积持续和原子氢处理时间为10s。由于沉积时,掺杂用的PH3和源SiF4加入氢等离子体区域,这样可以较好地控制膜中的P和Si的比例。
    在100K-400K温度范围内,用霍尔效应和电导测量确定其载流子输运特性。实验表明,材料结构是膜厚的函数,霍尔迁移率随膜厚度增加而增加,样品的最高迁移率区是在薄膜表面附近。载流子电导由晶粒问界势垒决定。
4.1.5化学气相沉积法(CVD)
    用化学气相沉积法(CVD),在铝陶瓷衬底上沉积3µm-5µm的硅薄膜。为了获得高质量的硅薄膜,铝陶瓷衬底上预先沉积Si3N4/SiOx双层膜。在硅薄膜沉积时,引入硼掺杂。用CW-Ar激光束溶化沉积的硅膜,在氮气氛中,400℃-500℃下再结晶。
    制备薄膜太阳电池时,用常规方法进行P扩散和沉积ITO膜,用氢等离子处理来钝化晶体缺陷。电池也可采用MgF2(110×10-8cm)/TIO2(650×l0-8cm)双层减反射膜,MgF2层用电子束蒸发方法沉积,TIO2层用常压CVD沉积。该方法制备的太阳电池厚度为4.2µm,短路电流为25.5mA/cm2,开路电压为0.48V,FF为0.53,η=6.52%。
4.1.6固相结晶法(SPC)
    开始材料a-Si用SiH,或Si2H,辉光放电沉积在平面或绒面衬底上,沉积时加A  PH3,形成p。掺杂层,其作用起增强晶核和形成大晶核的作用。p-掺杂层典型的厚度为170nm,在其上沉积不掺杂的a-Si层。通过改变沉积条件,如压力,RF功率等来改变不掺杂的a-Si层的结构。沉积后,在真空中600℃下进行退火,使a-Si层进行固相结晶,形成多晶硅。
    用Raman光谱研究未掺杂a-Si结构和多晶硅膜关系,经Secco腐蚀显露出晶界,用扫描电镜测量晶粒尺寸和密度。
    用上述SPC法制备的多晶硅薄膜电池,其结构为衬底采用钨,SPC后n型多晶硅层厚度为~10µm,在n型多晶硅上沉积卜型a-Si和p型a-Si,其厚度为~10µm,在p型a-Si上沉积~70nm的ITO膜,并沉积金属电极。制作的多晶硅太阳电池,面积为1cm2,转换效率为6.3%,当波长为900nin时,电他的收集系数为51%,电他少数载流子扩散长度为11µm,最高短路电流为28.4mA/cm2。p型掺杂层的P掺杂大于1020cm-3。
4.2 国内外发展现状与趋势
    晶体硅薄膜太阳电池,近年来在国外发展比较迅速。为了使晶体硅薄膜太阳电池达到商业化,努力将实验室结果推向市场,1988年制造出100cm2的薄膜太阳电池,其转换效率为8%。18个月后,其效率在同样面积下达到10.9%,3年半后12kw薄膜太阳电池系统投入市场。1994年底美国加利福尼亚区成功建立了17.1kW硅薄膜太阳电池方阵系统,这个系统电池是利用高温热分解喷涂法制备的。在薄膜电池上覆盖了一层抗反射层,硅薄膜晶粒为毫米级,具有宏观结构特性,减少了兰色和远红外光的响应。
    1997年召开的26届IEEE  PVSC,14届欧洲PVSEC和世界太阳能大会报道了Uvited  Solar  Systemn薄膜硅太阳电池,转换效率为16.6%,日本的Kanebo为9.8%,美国NREL提供的测试结果,USSA的Si/SiGe/SiGe薄膜电池,面积为903cm2,转换效率为10.2%,功率为9.2W。
    我国晶体硅薄膜太阳电他的研究仍处于实验室阶段。1982年长春应用化学研究所韩桂林等人用CVD法,在系统中采用高频加热石墨,系统抽真空后通氖气以驱除残留气体,加热石墨至所需温度,随即通入混合气体,在1100℃-1250℃下,SiCl4被H2还原,硅沉积在衬底上。研究了多晶硅薄膜的生长规律并对膜的基本物理特性进行研究。1998年北京市太阳能研究所赵玉文等报道了以SiH2Cl2为原料气体,采用快速热化学气相沉积(RTCVD)工艺在石英反应器中沉积多晶硅薄膜。气源为H2和SiH2Cl2的混合物,石英管内配有石墨样品托架,采用程控光源将石墨样品托架加热到1200℃。试验所用衬底为重掺杂磷非活性单晶硅片或非硅质底材。在1030℃下薄膜生长速率为10nm/s,研究了薄膜生长特性,薄膜的微结构,并研制了多晶硅薄膜电池,电池结构为金属栅线/p+多晶硅膜/n多晶硅膜/n++C-硅/金属接触。采用扩硼形成p+层,结深约为1µm,电池面积为1cm2,AM1.5、100mV/cm2条件下,无减反射涂层,电池转换效率为4.54%,Jsc=14.3mA/cm2,Voc=0.460V,FF=0.67。
    我国晶体硅薄膜太阳电池研究水平与国际水平相差较大,应加速发展。在廉价衬底上形成高质量的多晶硅薄膜,研究衬底与硅膜之间夹层,用以阻挡杂质向硅膜扩散,并研制出具有较高转换效率的多晶硅薄膜电池,在近期内使其转换效率能达到10%左右,为工业化生产作准备,以期成本能降低到$1/w左右。
5. 有机半导体太阳电池
    共轭高分子聚合物材料由于沿着其化学链的每格点已轨道交迭形成了非定域化的导带和价带,因而呈现半导体性质。通过适当的化学掺杂可达到高电子迁移率,禁带宽度为几个电子伏特。有机半导体有许多特殊的性质,可用来制造许多薄膜半导体器件,如:场效应晶体管、场效应电光调制器、光发射二极管、光伏器件等。用有机半导体制造太阳电池工艺简单、重量轻、价格低、便于大规模生产。
    用于光伏器件的高分子材料主要有酞青锌(ZnPc)、甲基叶林(TTP)、聚苯胺(PAm)、聚对苯乙炔(PPV)等。一般用金属电极与有机半导体之间形成肖特基势垒和产生的内建电场,离解光生激子成为自由载流子并驱动载流子在有机半导体中传输。以PPV为例,制作太阳电池过程如下:先在透明玻璃上沉积透明导电膜ITO层,再用旋转法将PPV溶液涂于ITO层上,然后在250℃下加热使溶液转换成PPV。 PPV的厚度控制 在100nm左右。最后利用热蒸发将金属A1、Mg或Cd沉积于PPV上,这样制备成金属/PPV/ITO结构光伏二极管。其开路电压列于表2。
        
    有机半导体光伏器件中光生载流子的产生依赖界面之间的电场,即只有扩散到金属/有机界面的激子才能够有效地转化为自由载流子。因而肖特基型有机太阳电他光伏特性与电极性质有关。同时金属电极透光性差,又能促使激子复合,以及金属电极表面态又是自由载流子的强复合中心,所以导致了金属/有机半导体太阳电池的填充因子很低。例如Mg/PPV太阳电池的填充因子只有0.2。
    为了提高填充因子,改进太阳电池的特性,利用有机半导体与有机半导体形成双层p-n异质结的系统。这种结构可使内建电场存在的结合面与金属电极隔开。例如用PPV作为p。型半导体,Perylene为卜型半导体,构成ITO/PPV(90nm)/Perylene(120mm)/Al结构的太阳电池、在晴场下3V偏压时,其整流比率大子105。在490nm波长和0.27mWcm-2功率的光照下,开路电压约为IV,短路电流量子产额大于6%。激子的扩散长度约为9×10-9m。
    双层有机半导体异质结太阳电池不同于单层电他的另一个关键性的原因是,有机/有机界面决定其光伏性质而不是有机/电极界面。有机/有机界面区控制着光生载流子的产生,界面内建场提供了自由载流子输运到电极的驱动力。表3列出了几种有机半导体异质结太阳电池的主要参数。
    经理论分析表明,异质结北红(Me-pTC)/铝氯酞青(CIAiPc)太阳电池最佳厚度为3×10-8m时,电池的理论转换效率最大可达4.76%。而单层份青膜层厚度为2×10-8m时,其单层肖特基电池的最大转换效率为1.0%。另外北红和铝氯酞青在真空沉积过程中,酞育分子呈有序排列,因而激子扩散长度(1.5×10-8m)比份菩层(无序结构)中的激子的扩散长度(6×10-8m)长得多。
    目前所有的非晶有机半导体或掺杂的高分子聚合物的一个突出问题是,低的载流子迁移率,即迁移率仅约10-8到10-2cm2/Vs。一般电子迁移率低于空穴迁移率。无序有机材料荷电粒子的传输主要是通过跳跃式过程进行的,即中性分子和荷电衍生物之间单电子氧化一还原过程。荷电粒子的跳跃速率或迁移率主要受无序性对电荷电粒子传输位置的影响。因此增加分子有序或减少无序性是增强迁移率的一种有效办法。最近Lin等人利用真空共蒸发的方法将NTDI(N,N’bis(1.2-dimeethy1propyl-1,4,5,8-naphthal-enetetracarboxylic  diimide)TTA  (triI-to1ylamine)形成组份薄膜,其组份比例0.55/0.45。这种NTDI/TTA组份有机半导体薄膜的电子迁移率比单一的NTDI膜增加了4-6倍。另外,在125℃的衬底温度下,真空蒸发CuPc形成的膜,其载流子迁移率达到002cm2/Vs。利用透射和扫描电子显微镜观察发现,在125℃下形成的CuPc膜是由尺寸为50nm×260nm棒状小晶体组成,已成为结晶薄膜,所以大大地增强了迁移率。
          
    *理论值
综上所述,选择最佳有机半导体材料、提高转换效率和稳定性等诸多方面问题,需要进行大量的工作才能解决,只有这样有机半导体太阳电池才能达到实际应用水平。

欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/dianzi/2458158.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2022-08-04
下一篇 2022-08-04

发表评论

登录后才能评论

评论列表(0条)

保存