KV 存储发展历程
美团第一代的分布式 KV 存储如下图左侧的架构所示,相信很多公司都经历过这个阶段。在客户端内做一致性哈希,在后端部署很多的 Memcached 实例,这样就实现了最基本的 KV 存储分布式设计。但这样的设计存在很明显的问题:比如在宕机摘除节点时,会丢数据,缓存空间不够需要扩容,一致性哈希也会丢失一些数据等等,这样会给业务开发带来的很多困扰。
随着 Redis 项目的成熟,美团也引入了 Redis 来解决我们上面提到的问题,进而演进出来如上图右侧这样一个架构。大家可以看到,客户端还是一样,采用了一致性哈希算法,服务器端变成了 Redis 组成的主从结构。当任何一个节点宕机,我们可以通过 Redis 哨兵完成 Failover,实现高可用。但有一个问题还是没有解决,如果扩缩容的话,一致性哈希仍然会丢数据,那么这个问题该如何解决呢?
这个时候,我们发现有了一个比较成熟的 KV 存储开源项目:阿里 Tair 。2014年,我们引入了 Tair 来满足业务 KV 存储方面的需求。Tair 开源版本的架构主要分成三部分:上图下边是存储节点,存储节点会上报心跳到它的中心节点,中心节点内部有两个配置管理节点,会监控所有的存储节点。当有任何存储节点宕机或者扩容时,它会做集群拓扑的重新构建。当客户端启动时,它会直接从中心节点拉来一个路由表。这个路由表简单来说就是一个集群的数据分布图,客户端根据路由表直接去存储节点读写。针对之前 KV 的扩容丢数据问题,它也有数据迁移机制来保证数据的完整性。
但是,我们在使用的过程中,还遇到了一些其他问题,比如中心节点虽然是主备高可用的,但实际上它没有类似于分布式仲裁的机制,所以在网络分割的情况下,它是有可能发生“脑裂”的,这个也给我们的业务造成过比较大的影响。另外,在容灾扩容时,也遇到过数据迁移影响到业务可用性的问题。另外,我们之前用过 Redis ,业务会发现 Redis 的数据结构特别丰富,而 Tair 还不支持这些数据结构。虽然我们用 Tair 解决了一些问题,但是 Tair 也无法完全满足业务需求。毕竟,在美团这样一个业务规模较大和业务复杂度较高的场景下,很难有开源系统能很好地满足我们的需求。最终,我们决定在已应用的开源系统之上进行自研。
刚好在2015 年, Redis 官方正式发布了集群版本 Redis Cluster。所以,我们紧跟社区步伐,并结合内部需求做了很多开发工作,演进出了全内存、高吞吐、低延迟的 KV 存储 Squirrel。另外,基于 Tair,我们还加入了很多自研的功能,演进出持久化、大容量、数据高可靠的 KV 存储 Cellar 。因为 Tair 的开源版本已经有四五年没有更新了,所以,Cellar 的迭代完全靠美团自研,而 Redis 社区一直很活跃。总的来说,Squirrel 的迭代是自研和社区并重,自研功能设计上也会尽量与官方架构进行兼容。后面大家可以看到,因为这些不同,Cellar 和 Squirrel 在解决同样的问题时也选取了不同的设计方案。
这两个存储其实都是 KV 存储领域不同的解决方案。在实际应用上,如果业务的数据量小,对延迟敏感,我们建议大家用 Squirrel ;如果数据量大,对延迟不是特别敏感,我们建议用成本更低的 Cellar 。目前这两套 KV 存储系统在美团内部每天的调用量均已突破万亿,它们的请求峰值也都突破了每秒亿级。
内存 KV Squirrel 架构和实践
在开始之前,本文先介绍两个存储系统共通的地方。比如分布式存储的经典问题:数据是如何分布的?这个问题在 KV 存储领域,就是 Key 是怎么分布到存储节点上的。这里 Squirrel 跟 Cellar 是一样的。当我们拿到一个 Key 后,用固定的哈希算法拿到一个哈希值,然后将哈希值对 Slot 数目取模得到一个Slot id,我们两个 KV 现在都是预分片16384个 Slot 。得到 Slot id 之后,再根据路由表就能查到这个 Slot 存储在哪个存储节点上。这个路由表简单来说就是一个 Slot 到存储节点的对照表。
KV 数据分布介绍
接下来讲一下对高可用架构的认知,个人认为高可用可以从宏观和微观两个角度来看。从宏观的角度来看,高可用就是指容灾怎么做。比如说挂掉了一个节点,你该怎么做?一个机房或者说某个地域的一批机房宕机了,你该怎么做?而从微观的角度看,高可用就是怎么能保证端到端的高成功率。我们在做一些运维升级或者扩缩容数据迁移的时候,能否做到业务请求的高可用?本文也会从宏观和微观两个角度来分享美团做的一些高可用工作。
Squirrel 架构
上图就是我们的 Squirrel 架构。中间部分跟 Redis 官方集群是一致的。它有主从的结构, Redis 实例之间通过 Gossip 协议去通信。我们在右边添加了一个集群调度平台,包含调度服务、扩缩容服务和高可用服务等,它会去管理整个集群,把管理结果作为元数据更新到 ZooKeeper。我们的客户端会订阅 ZooKeeper 上的元数据变更,实时获取到集群的拓扑状态,直接在 Redis 集群进行读写 *** 作。
Squirrel 节点容灾
然后再看一下 Squirrel 容灾怎么做。对于 Redis 集群而言,节点宕机已经有完备的处理机制了。官方提供的方案,任何一个节点从宕机到被标记为 FAIL 摘除,一般需要经过 30 秒。主库的摘除可能会影响数据的完整性,所以,我们需要谨慎一些。但是对于从库呢?我们认为这个过程完全没必要。另一点,我们都知道内存的 KV 存储数据量一般都比较小。对于业务量很大的公司来说,它往往会有很多的集群。如果发生交换机故障,会影响到很多的集群,宕机之后去补副本就会变得非常麻烦。为了解决这两个问题,我们做了 HA 高可用服务。
它的架构如下图所示,它会实时监控集群的所有节点。不管是网络抖动,还是发生了宕机(比如说 Redis 2 ),它可以实时更新 ZooKeeper ,告诉 ZooKeeper 去摘除 Redis 2 ,客户端收到消息后,读流量就直接路由到 Redis 3上。如果 Redis 2 只是几十秒的网络抖动,过几十秒之后,如果 HA 节点监控到它恢复后,会把它重新加回。
Squirrel—节点容灾
如果过了一段时间,HA 判断它属于一个永久性的宕机,HA 节点会直接从 Kubernetes 集群申请一个新的 Redis 4 容器实例,把它加到集群里。此时,拓扑结构又变成了一主两从的标准结构,HA 节点更新完集群拓扑之后,就会去写 ZooKeeper 通知客户端去更新路由,客户端就能到 Redis 4 这个新从库上进行读 *** 作。
通过上述方案,我们把从库的摘除时间从 30 秒降低到了 5 秒。另外,我们通过 HA 自动申请容器实例加入集群的方式,把宕机补副本变成了一个分钟级的自动 *** 作,不需要任何人工的介入。
Squirrel 跨地域容灾
我们解决了单节点宕机的问题,那么跨地域问题如何解决呢?我们首先来看下跨地域有什么不同。第一,相对于同地域机房间的网络而言,跨地域专线很不稳定;第二,跨地域专线的带宽是非常有限且昂贵的。而集群内的复制没有考虑极端的网络环境。假如我们把主库部署到北京,两个从库部署在上海,同样一份数据要在北上专线传输两次,这样会造成巨大的专线带宽浪费。另外,随着业务的发展和演进,我们也在做单元化部署和异地多活架构。用官方的主从同步,满足不了我们的这些需求。基于此,我们又做了集群间的复制方案。
如上图所示,这里画出了北京的主集群以及上海的从集群,我们要做的是通过集群同步服务,把北京主集群的数据同步到上海从集群上。按照流程,首先要向我们的同步调度模块下发“在两个集群间建立同步链路”的任务,同步调度模块会根据主从集群的拓扑结构,把主从集群间的同步任务下发到同步集群,同步集群收到同步任务后会扮成 Redis 的 Slave,通过 Redis 的复制协议,从主集群上的从库拉取数据,包括 RDB以及后续的增量变更。同步机收到数据后会把它转成客户端的写命令,写到上海从集群的主节点里。
通过这样的方式,我们把北京主集群的数据同步到了上海的从集群。同样的,我们要做异地多活也很简单,再加一个反向的同步链路,就可以实现集群间的双向同步。
接下来我们讲一下如何做好微观角度的高可用,也就是保持端到端的高成功率。对于 Squirrel ,主要讲如下三个影响成功率的问题:
数据迁移造成超时抖动。
持久化造成超时抖动。
热点 Key 请求导致单节点过载。
Squirrel 智能迁移
对于数据迁移,我们主要遇到三个问题:
Redis Cluster 虽然提供了数据迁移能力,但是对于要迁哪些 Slot,Slot 从哪迁到哪,它并不管。
做数据迁移的时候,大家都想越快越好,但是迁移速度过快又可能影响业务正常请求。
Redis 的 Migrate 命令会阻塞工作线程,尤其在迁移大 Value 的时候会阻塞特别久。
为了解决这些问题,我们做了全新的迁移服务。
下面我们按照工作流,讲一下它是如何运行的。首先生成迁移任务,这步的核心是“就近原则”,比如说同机房的两个节点做迁移肯定比跨机房的两个节点快。迁移任务生成之后,会把任务下发到一批迁移机上。迁移机迁移的时候,有这样几个特点:
会在集群内迁出节点间做并发,比如同时给 Redis 1、Redis 3 下发迁移命令。
每个 Migrate 命令会迁移一批 Key。
我们会用监控服务去实时采集客户端的成功率、耗时,服务端的负载、QPS 等,之后把这个状态反馈到迁移机上。迁移数据的过程就类似 TCP 慢启动的过程,它会把速度一直往上加,若出现请求成功率下降等情况,它的速度就会降低,最终迁移速度会在动态平衡中稳定下来,这样就达到了最快速的迁移,同时又尽可能小地影响业务的正常请求。
接下来,我们看一下大 Value 的迁移,我们实现了一个异步 Migrate 命令,该命令执行时,Redis 的主线程会继续处理其他的正常请求。如果此时有对正在迁移 Key 的写请求过来,Redis 会直接返回错误。这样最大限度保证了业务请求的正常处理,同时又不会阻塞主线程。
Squirrel 持久化重构
Redis 主从同步时会生成 RDB。生成 RDB 的过程会调用 Fork 产生一个子进程去写数据到硬盘,Fork 虽然有 *** 作系统的 COW 机制,但是当内存用量达到 10 G 或 20 G 时,依然会造成整个进程接近秒级的阻塞。这对在线业务来说几乎是无法接受的。我们也会为数据可靠性要求高的业务去开启 AOF,而开 AOF 就可能因 IO 抖动造成进程阻塞,这也会影响请求成功率。对官方持久化机制的这两个问题,我们的解决方案是重构持久化机制。
上图是我们最新版的 Redis 持久化机制,写请求会先写到 DB 里,然后写到内存 Backlog,这跟官方是一样的。同时它会把请求发给异步线程,异步线程负责把变更刷到硬盘的 Backlog 里。当硬盘 Backlog 过多时,我们会主动在业务低峰期做一次 RDB ,然后把 RDB 之前生成的 Backlog 删除。
如果这时候我们要做主从同步,去寻找同步点的时候,该怎么办?第一步还是跟官方一样,我们会从内存 Backlog 里找有没有要求的同步点,如果没有,我们会去硬盘 Backlog 找同步点。由于硬盘空间很大,硬盘 Backlog 可以存储特别多的数据,所以很少会出现找不到同步点的情况。如果硬盘 Backlog 也没有,我们就会触发一次类似于全量重传的 *** 作,但这里的全量重传是不需要当场生成 RDB 的,它可以直接用硬盘已存的 RDB 及其之后的硬盘 Backlog 完成全量重传。通过这个设计,我们减少了很多的全量重传。
另外,我们通过控制在低峰区生成 RDB ,减少了很多 RDB 造成的抖动。同时,我们也避免了写 AOF 造成的抖动。不过,这个方案因为写 AOF 是完全异步的,所以会比官方的数据可靠性差一些,但我们认为这个代价换来了可用性的提升,这是非常值得的。
Squirrel 热点 Key
下面看一下 Squirrel 的热点 Key 解决方案。如下图所示,普通主、从是一个正常集群中的节点,热点主、从是游离于正常集群之外的节点。我们看一下它们之间怎么发生联系。
当有请求进来读写普通节点时,节点内会同时做请求 Key 的统计。如果某个 Key 达到了一定的访问量或者带宽的占用量,会自动触发流控以限制热点 Key 访问,防止节点被热点请求打满。同时,监控服务会周期性的去所有 Redis 实例上查询统计到的热点 Key。如果有热点,监控服务会把热点 Key 所在 Slot 上报到我们的迁移服务。迁移服务这时会把热点主从节点加入到这个集群中,然后把热点 Slot 迁移到这个热点主从上。因为热点主从上只有热点 Slot 的请求,所以热点 Key的处理能力得到了大幅提升。通过这样的设计,我们可以做到实时的热点监控,并及时通过流控去止损;通过热点迁移,我们能做到自动的热点隔离和快速的容量扩充。
持久化 KV Cellar 架构和实践
下面看一下持久化 KV Cellar 的架构和实践。下图是我们最新的 Cellar 架构图。
跟阿里开源的 Tair 主要有两个架构上的不同。第一个是OB,第二个是 ZooKeeper。我们的 OB 跟 ZooKeeper 的 Observer 是类似的作用,提供 Cellar 中心节点元数据的查询服务。它可以实时与中心节点的 Master 同步最新的路由表,客户端的路由表都是从 OB 去拿。这样做的好处主要有两点,第一,把大量的业务客户端跟集群的大脑 Master 做了天然的隔离,防止路由表请求影响集群的管理。第二,因为 OB 只供路由表查询,不参与集群的管理,所以它可以进行水平扩展,极大地提升了我们路由表的查询能力。另外,我们引入了 ZooKeeper 做分布式仲裁,解决我刚才提到的 Master、Slave 在网络分割情况下的“脑裂”问题,并且通过把集群的元数据存储到 ZooKeeper,我们保证了元数据的高可靠。
Cellar 节点容灾
介绍完整体的架构,我们看一下 Cellar 怎么做节点容灾。一个集群节点的宕机一般是临时的,一个节点的网络抖动也是临时的,它们会很快地恢复,并重新加入集群。因为节点的临时离开就把它彻底摘除,并做数据副本补全 *** 作,会消耗大量资源,进而影响到业务请求。所以,我们实现了 Handoff 机制来解决这种节点短时故障带来的影响。
如上图所示 ,如果 A 节点宕机了,会触发 Handoff 机制,这时候中心节点会通知客户端 A节点发生了故障,让客户端把分片 1 的请求也打到 B 上。B 节点正常处理完客户端的读写请求之后,还会把本应该写入 A 节点的分片 1&2 数据写入到本地的 Log 中。
如果 A 节点宕机后 3~5 分钟,或者网络抖动 30~50 秒之后恢复了,A 节点就会上报心跳到中心节点,中心节点就会通知 B 节点:“ A 节点恢复了,你去把它不在期间的数据传给它。”这时候,B 节点就会把本地存储的 Log 回写到 A 节点上。等到 A 节点拥有了故障期间的全量数据之后,中心节点就会告诉客户端,A 节点已经彻底恢复了,客户端就可以重新把分片 1 的请求打回 A 节点。
通过这样的 *** 作,我们可以做到秒级的快速节点摘除,而且节点恢复后加回,只需补齐少量的增量数据。另外如果 A 节点要做升级,中心节点先通过主动 Handoff 把 A 节点流量切到 B 节点,A 升级后再回写增量 Log,然后切回流量加入集群。这样通过主动触发 Handoff 机制,我们就实现了静默升级的功能。
Cellar 跨地域容灾
下面我介绍一下 Cellar 跨地域容灾是怎么做的。Cellar 跟 Squirrel 面对的跨地域容灾问题是一样的,解决方案同样也是集群间复制。以下图一个北京主集群、上海从集群的跨地域场景为例,比如说客户端的写 *** 作到了北京的主集群 A 节点,A 节点会像正常集群内复制一样,把它复制到 B 和 D 节点上。同时 A 节点还会把数据复制一份到从集群的 H 节点。H 节点处理完集群间复制写入之后,它也会做从集群内的复制,把这个写 *** 作复制到从集群的 I 、K 节点上。通过在主从集群的节点间建立这样一个复制链路,我们完成了集群间的数据复制,并且这个复制保证了最低的跨地域带宽占用。同样的,集群间的两个节点通过配置两个双向复制的链路,就可以达到双向同步异地多活的效果。
Cellar 强一致
我们做好了节点容灾以及跨地域容灾后,业务又对我们提出了更高要求:强一致存储。我们之前的数据复制是异步的,在做故障摘除时,可能因为故障节点数据还没复制出来,导致数据丢失。但是对于金融支付等场景来说,它们是不容许数据丢失的。面对这个难题,我们该怎么解决?目前业界主流的解决方案是基于 Paxos 或 Raft 协议的强一致复制。我们最终选择了 Raft 协议。主要是因为 Raft 论文是非常详实的,是一篇工程化程度很高的论文。业界也有不少比较成熟的 Raft 开源实现,可以作为我们研发的基础,进而能够缩短研发周期。
下图是现在 Cellar 集群 Raft 复制模式下的架构图,中心节点会做 Raft 组的调度,它会决定每一个 Slot 的三副本存在哪些节点上。
大家可以看到 Slot 1 在存储节点 1、2、4 上,Slot 2 在存储节点2、3、4上。每个 Slot 组成一个 Raft 组,客户端会去 Raft Leader 上进行读写。由于我们是预分配了 16384 个 Slot,所以,在集群规模很小的时候,我们的存储节点上可能会有数百甚至上千个 Slot 。
这时候如果每个 Raft 复制组都有自己的复制线程、 复制请求和 Log等,那么资源消耗会非常大,写入性能会很差。所以我们做了 MulTI Raft 实现, Cellar 会把同一个节点上所有的 Raft 复制组写一份 Log,用同一组线程去做复制,不同 Raft 组间的复制包也会按照目标节点做整合,以保证写入性能不会因 Raft 组过多而变差。Raft 内部其实是有自己的选主机制,它可以控制自己的主节点,如果有任何节点宕机,它可以通过选举机制选出新的主节点。
那么,中心节点是不是就不需要管理 Raft 组了吗?不是的。这里讲一个典型的场景,如果一个集群的部分节点经过几轮宕机恢复的过程, Raft Leader 在存储节点之间会变得极其不均。而为了保证数据的强一致,客户端的读写流量又必须发到 Raft Leader,这时候集群的节点流量会很不均衡。所以我们的中心节点还会做 Raft 组的 Leader 调度。比如说 Slot 1 存储在节点 1、2、4,并且节点 1 是 Leader。如果节点 1 挂了,Raft 把节点 2 选成了 Leader。然后节点 1 恢复了并重新加入集群,中心节点这时会让节点 2 把 Leader 还给节点 1 。这样,即便经过一系列宕机和恢复,我们存储节点之间的 Leader 数目仍然能保证是均衡的。
接下来,我们看一下 Cellar 如何保证它的端到端高成功率。这里也讲三个影响成功率的问题。Cellar 遇到的数据迁移和热点 Key 问题与 Squirrel 是一样的,但解决方案不一样。这是因为 Cellar 走的是自研路径,不用考虑与官方版本的兼容性,对架构改动更大些。另一个问题是慢请求阻塞服务队列导致大面积超时,这是 Cellar 网络、工作多线程模型设计下会遇到的不同问题。
Cellar 智能迁移
上图是 Cellar 智能迁移架构图。我们把桶的迁移分成了三个状态。第一个状态就是正常的状态,没有任何迁移。如果这时候要把 Slot 2 从 A 节点迁移到 B节点,A 会给 Slot 2 打一个快照,然后把这个快照全量发到 B 节点上。在迁移数据的时候, B 节点的回包会带回 B 节点的状态。B 的状态包括什么?引擎的压力、网卡流量、队列长度等。A 节点会根据 B 节点的状态调整自己的迁移速度。像 Squirrel 一样,它经过一段时间调整后,迁移速度会达到一个动态平衡,达到最快速的迁移,同时又尽可能小地影响业务的正常请求。
当 Slot 2 迁移完后, 会进入图中 Slot 3 的状态。客户端这时可能还没更新路由表,当它请求到了 A 节点,A 节点会发现客户端请求错了节点,但它不会返回错误,它会把请求代理到 B 节点上,然后把 B 的响应包再返回客户端。同时它会告诉客户端,需要更新一下路由表了,此后客户端就能直接访问到 B 节点。这样就解决了客户端路由更新延迟造成的请求错误。
Cellar 快慢列队
下图上方是一个标准的线程队列模型。网络线程池接收网络流量解析出请求包,然后把请求放到工作队列里,工作线程池会从工作队列取请求来处理,然后把响应包放回网络线程池发出。
我们分析线上发生的超时案例时发现,一批超时请求当中往往只有一两个请求是引擎处理慢导致的,大部分请求,只是因为在队列等待过久导致整体响应时间过长而超时了。从线上分析来看,真正的慢请求占超时请求的比例只有 1/20。
我们的解法是什么样?很简单,拆线程池、拆队列。我们的网络线程在收到包之后,会根据它的请求特点,是读还是写,快还是慢,分到四个队列里。读写请求比较好区分,但快慢怎么分开?我们会根据请求的 Key 个数、Value大小、数据结构元素数等对请求进行快慢区分。然后用对应的四个工作线程池处理对应队列的请求,就实现了快慢读写请求的隔离。这样如果我有一个读的慢请求,不会影响另外三种请求的正常处理。不过这样也会带来一个问题,我们的线程池从一个变成四个,那线程数是不是变成原来的四倍?其实并不是的,我们某个线程池空闲的时候会去帮助其它的线程池处理请求。所以,我们线程池变成了四个,但是线程总数并没有变。我们线上验证中这样的设计能把服务 TP999 的延迟降低 86%,可大幅降低超时率。
Cellar 热点 Key
上图是 Cellar 热点 Key 解决方案的架构图。我们可以看到中心节点加了一个职责,多了热点区域管理,它现在不只负责正常的数据副本分布,还要管理热点数据的分布,图示这个集群在节点 C、D 放了热点区域。我们通过读写流程看一下这个方案是怎么运转的。如果客户端有一个写 *** 作到了 A 节点,A 节点处理完成后,会根据实时的热点统计结果判断写入的 Key 是否为热点。
如果这个 Key 是一个热点,那么它会在做集群内复制的同时,还会把这个数据复制有热点区域的节点,也就是图中的 C、D 节点。同时,存储节点在返回结果给客户端时,会告诉客户端,这个 Key 是热点,这时客户端内会缓存这个热点 Key。当客户端有这个 Key 的读请求时,它就会直接去热点区域做数据的读取。通过这样的方式,我们可以做到只对热点数据做扩容,不像 Squirrel ,要把整个 Slot 迁出来做扩容。有必要的话,中心节点也可以把热点区域放到集群的所有节点上,所有的热点读请求就能均衡的分到所有节点上。另外,通过这种实时的热点数据复制,我们很好地解决了类似客户端缓存热点 KV 方案造成的一致性问题。
发展规划和业界趋势
最后,一起来看看我们项目的规划和业界的技术趋势。这部分内容会按照服务、系统、硬件三层来进行阐述。首先在服务层,主要有三点:
Redis Gossip 协议优化。大家都知道 Gossip 协议在集群的规模变大之后,消息量会剧增,它的 Failover 时间也会变得越来越长。所以当集群规模达到 TB 级后,集群的可用性会受到很大的影响,所以我们后面会重点在这方面做一些优化。
我们已经在 Cellar 存储节点的数据副本间做了 Raft 复制,可以保证数据强一致,后面我们会在 Cellar 的中心点内部也做一个 Raft 复制,这样就不用依赖于 ZooKeeper 做分布式仲裁、元数据存储了,我们的架构也会变得更加简单、可靠。
Squirrel 和 Cellar 虽然都是 KV 存储,但是因为它们是基于不同的开源项目研发的,所以 API 和访问协议不同,我们之后会考虑将 Squirrel 和 Cellar 在 SDK 层做整合,虽然后端会有不同的存储集群,但业务侧可以用一套 SDK 进行访问。
在系统层面,我们正在调研并去落地一些 Kernel Bypass 技术,像 DPDK、SPDK 这种网络和硬盘的用户态 IO 技术。它可以绕过内核,通过轮询机制访问这些设备,可以极大提升系统的 IO 能力。存储作为 IO 密集型服务,性能会获得大幅的提升。
在硬件层面,像支持 RDMA 的智能网卡能大幅降低网络延迟和提升吞吐;还有像 3D XPoint 这样的闪存技术,比如英特尔新发布的 AEP 存储,其访问延迟已经比较接近内存了,以后闪存跟内存之间的界限也会变得越来越模糊;最后,看一下计算型硬件,比如通过在闪存上加 FPGA 卡,把原本应该 CPU 做的工作,像数据压缩、解压等,下沉到卡上执行,这种硬件能在解放 CPU 的同时,也可以降低服务的响应延迟。
作者简介
泽斌,美团点评高级技术专家,2014 年加入美团。
编辑:hfy
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)