LCD电视应用中可以采用多种架构产生驱动CCFL所需的交流波形,驱动多个CCFL时所要面对的三个关键的设计挑战是选择最佳的驱动架构、多灯驱动、灯频和脉冲调光频率控制。本文对四种常用驱动架构进行了对比分析,并提出多灯设计中解决亮度不均以及驱动频率可能干扰画面等问题的方法,并提出基于DS3984/DS3988的电路方案。
图1:Royer驱动器简单,但不太精确
液晶显示器(LCD)正成为电视的主流显示技术。LCD面板实际上是电子控制的光阀,需要靠背光源产生可视的影像,LCD电视通常用冷阴极萤光灯提供光源。其他背光技术,例如发光二极体也受到一定的重视,但由於成本过高限制了它的应用。
由於LCD电视是消费品,压倒一切的设计考虑是成本─当然必须满足最低限度的性能要求。驱动背光灯的CCFL转换器不能明显缩短灯的寿命。此外,由於要用高压驱动,安全性也是一个必须考虑的因素。LCD电视应用中,驱动多个CCFL时所要面对的三个关键的设计挑战是:挑选最佳的驱动架构;多灯驱动;灯频和脉冲调光频率的严格控制。
图2:全桥驱动器很适合於大范围的直流电源
1 挑选最佳的驱动架构
可以用多种架构产生驱动CCFL所需的交流波形,包括Royer(自振荡,self-oscillaTIng)、半桥、全桥和推挽。表1详细归纳了这四种架构各自的优缺点。
1.1 Royer架构
Royer架构(图1)的最佳应用是在不需要严格控制灯频和亮度的设计中。由於Royer架构是自振荡设计,受元件参数偏差的影响,很难严格控制灯频和灯电流,而这两者都会直接影响灯的亮度。因此,Royer架构很少用於LCD电视,尽管它是本文所述四种架构中最廉价的。
1.2 全桥架构
全桥架构最适合於直流电源电压非常宽的应用(图2),这就是几乎所有笔记本PC都采用全桥方式的原因。在笔记本中,转换器的直流电源直接来自系统的主直流电源,其变化范围通常在7V(低电池电压)至21V(交流配接器)。有些全桥方案要求采用p通道MOSFET,比n通道MOSFET更贵。另外,由於固有的高导通电阻,p通道MOSFET的效率更低。
1.3 半桥架构
图3:半桥驱动器比全桥驱动器少用两个MOSFET
相较全桥,半桥架构最大的好处是每个通道少用了两只MOSFET(图3)。但是,它需要更高匝比的变压器,这会增加变压器的成本。还有,如同全桥架构一样,半桥架构也可能会用到p通道MOSFET。
1.4 推挽架构
推挽驱动器有很多好处:这种架构只用到n通道MOSFET(图4),这有利於降低成本和增加转换器效率;它很容易适应较高的转换器直流电源电压;采用更高的转换器直流电源电压时,只需选择具有合适的漏-源击穿电压的MOSFET即可。不管转换器的直流电源电压如何,都可采用同样的CCFL控制器。但采用n通道MOSFET的全桥和半桥架构就无法做到这一点。
推挽架构最大的缺点是要求转换器直流电源电压的范围小於2:1。否则,当直流电源电压处於高阶时,由於交流波形的高振幅因子,系统的效率会降低。这使推挽架构不适用於笔记型电脑,但对於LCD电视非常理想,因为转换器直流电源电压通常会稳定在±20%以内。
图4:推挽驱动器非常简单,还可精确控制
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)