长串LED boost驱动器(使用铝电解电容)

长串LED boost驱动器(使用铝电解电容),第1张

TV和显示器背光、路灯、停车场照明经常使用长串LED,这类系统需要一个能够产生高压的电流驱动器。本参考设计利用MAX16834构建了一个这样的驱动器,能够获得非常高的调光比。
该参考设计利用MAX16834构建一个boost LED驱动器,用于驱动长串LED。适用于大尺寸LCD TV或显示器的LED背光、路灯以及停车场照明。

VIN:24VDC ±5% (1.22A)
VLED配置:23个串联LED (75V),350mA。
调光:脉冲导通时间可低至3.33µs (调光时钟频率 = 100Hz时,调光比为3000:1)。

注:已搭建该设计电路并经过测试,但未进行详细测试,具体应用可能存在细微差别,有待改进。


详细图片(PDF,3.53MB)
图1. LED驱动器电路板

长串LED boost驱动器(使用铝电解电容),图2. LED驱动器原理图,第2张
详细图片(PDF,295kB)
图2. LED驱动器原理图


详细图片(PDF,2.85MB)
图3. LED驱动器布局

长串LED boost驱动器(使用铝电解电容),图4. 材料清单,第3张
详细图片(PDF,1.3MB)
图4. 材料清单

长串LED boost驱动器(使用铝电解电容),图5. 设计表格,如需获取该电子表格用于您的设计,请与当地的Maxim销售办事处联系。,第4张
详细图片(PDF,900kB)
图5. 设计表格,如需获取该电子表格用于您的设计,请与当地的Maxim销售办事处联系。

长串LED boost驱动器(使用铝电解电容),图6. 漏极电压和检流电阻的电压(50mΩ),第5张
图6. 漏极电压和检流电阻的电压(50mΩ)

长串LED boost驱动器(使用铝电解电容),图7. 漏极电压的上升时间,第6张
图7. 漏极电压的上升时间

长串LED boost驱动器(使用铝电解电容),图8. 输出电压(交流耦合)和检流电阻的电压,第7张
图8. 输出电压(交流耦合)和检流电阻的电压

长串LED boost驱动器(使用铝电解电容),图9. 高调光比(导通时间 < 4µs),第8张
图9. 高调光比(导通时间 < 4µs)

长串LED boost驱动器(使用铝电解电容),图10. 电感温度的上升,计算器由Coilcraft®提供。,第9张
图10. 电感温度的上升,计算器由Coilcraft®提供。

电路说明 概述该参考设计为驱动长串LED提供高压boost电流源,适用于LCD TV背光、LCD监视器背光、路灯、停车场照明等。长串LED驱动是一种高性价比LED驱动方案。另外,由于LED具有完全相同的电流,可以很好地控制亮度变化。设计采用24V输入,提供高达80V的LED输出,能够为LED串提供高达350mA的电流。测得的输入功率为29.3W,输出功率为26.4W,效率大约为90%。

PCB印刷电路板(PCB)是用于MAX16834升压设计的通用电路板(图1图3)。因此,电路板中有许多短路或未组装的元件。原理图(图2)中给出了这些元件。图4所示为该设计的材料清单。

拓扑结构本设计采用300kHz非连续boost调节器。图5所示电子表格显示了计算得出的MOSFET和电感的RMS电流、峰值电流。不可否认,非连续工作模式具有一些缺点,MOSFET和电感电流较大。然而,由于MOSFET (Q1)导通时输出电流基本为零,输出二极管(D2)的反向恢复损耗极小。这一优势弥补了设计中的不足,因为反向恢复电流产生的过热和噪声很难控制。检查图6所示电路波形,可以发现MOSFET的导通时间大约为1.6µs。一旦断开MOSFET,电感连接到输出电容,漏极电压将跳至75V并保持大约1µs的时间。此后,电感能量基本耗尽,在随后的1微秒内,电感和MOSFET的输出电容开始自激,直到下一个导通周期。

MOSFET驱动由于采用非连续设计,MOSFET峰值电流高于连续工作模式下电流的两倍。然而,由于MOSFET导通期间没有电流通过,只有断开期间才会出现开关损耗。MAX16834为MOSFET提供足够的驱动,可以在大约20ns内断开开关(图7),因此温度上升的幅度较小。如果系统存在EMI问题,可以更改MOSFET栅极的串联电阻和二极管,以调整开关时间。必要时,将第二个MOSFET (Q2)与Q1并联,以减少温升。

输出电容驱动器使用寿命较长的电解电容作为输入和输出电容。电解电容器的耐用性不及陶瓷电容,且尺寸较大,但能够以较低成本提供充足的电容量。为了控制电路高度(10mm),电解电容以水平方向安装在电路板上。输入、输出电容在+105°C条件下的额定使用寿命分别为4000小时和8000小时。通常,环境温度每降低10°C,电解电容的使用寿命延长一倍。这意味着在+65°C环境温度下,输入/输出电容的预期寿命分别为64000小时/128000小时。图5电子表格显示,只需大约6µF的输出电容即可达到所要求的输出电压纹波。由于电解电容器的纹波电流容量有限,本设计使用了两个47µF电容。使用多个电容能够消除大部分开关频率的纹波电压(图8)。但由于电容选择了具有较高等效串联电感(ESL)的电解电容,无法完全滤除MOSFET开关断开时所产生的电路噪声。在输出端添加陶瓷电容或低Q值LC滤波器可以在一定程度上解决这一问题。任何元件都需要付出一定的成本,在安装之前应首先确定是否存在与高频尖峰信号。

调光MAX16834非常适合调光。当PWMDIM (IC的第10引脚)为低电平时,会产生以下三个 *** 作:首先,开关MOSFET (Q1)的栅极驱动(第13引脚)变为低电平,避免额外能量传送给LED串;其次,调光MOSFET (Q3)的栅极驱动(第18引脚)变为低电平,可以立即降低LED串的电流,而且调光MOSFET可以在断开期间保持输出电容的电压恒定;最后,为了保持补偿电容的稳定电压,COMP (第3引脚)变为高阻。COMP引脚的高阻可确保IC在PWMDIM返回高电平后立即以正确的占空比开始工作。上述 *** 作以及非连续工作模式中在每个周期开始时电感电流为零,使得PWM具有极短的导通时间,因此可以获得较高的调光高。调光比仅受限于主开关驱动器的频率。由于本设计的工作频率为300kHz,PWM最短导通时间约为3.33µs,意味着调光比可以达到1500:1 (200Hz调光频率)。图9给出了导通时间低于4µs时,LED串的电流。LED串电流符合要求,可以提供最高350mA的电流。

OVP 如果LED串开路MAX16834的过压保护(OVP)电路会在下次导通前将驱动器断开大约400ms。本设计的OVP阈值设为101V。

FAULT# MAX16834提供一路FAULT#输出信号。一旦检测到内部故障(过流或过压),该输出将变为低电平。故障解除后,FAULT#即可恢复到高电平。FAULT#不会锁定。

温升由于电路高效(大约90%)工作,驱动元件的温度不会升高。电感则例外,其温度上升幅度可以达到+49°C,高于图10中Coilcraft给出的+27°C预测温度。当峰值电流在RMS电流两倍以上时(非连续设计会出现这种情况),预测温度偏差较大。高温环境下,需要使用汽车级电感(+125°C)或使用两个串联的6µH电感。常温或较低温度环境下,一个12µH电感即足以满足要求。

温度测量使用实际的LED负载测量以下温度:

VIN: 24VDC   Ambient: +22°C ΔT L1: +71°C 49°C D2: +43°C 21°C Q2: +38°C 16°C Q3: +34°C 12°C
加电过程
  1. 在LED+焊盘和LED-焊盘之间连接最多23个串联的LED。
  2. 在VIN焊盘和GND焊盘之间连接24V/2A电源
  3. 如果需要调光,在DIM IN和GND焊盘间加载一个PWM信号(0至5V)。
  4. 接通24V电源。
  5. 根据需要调整PWM占空比,进行调光。

欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/dianzi/2464262.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2022-08-04
下一篇 2022-08-04

发表评论

登录后才能评论

评论列表(0条)

保存