引言
LED的散热问题将是限制它未来能否在市场上取得更大成功的主要因素。目前业界的很多研究都集中在散热器上,但对LED和散热表面之间的隔层研究较少。
不过,只要我们在设计思路和材料使用上做出一些改变,我们就不仅可以显着提高热管理性能和可靠性,而且还可以得到一个更简化的系统。使用陶瓷作为散热器、电路载体和产品设计的一个部分,要求我们有一些全新的思考模式和意愿,来战胜传统的设计模式。
基于计算流体力学(CFD)的仿真过程支持热优化和产品技术设计。本文将阐述理论根据、概念验证、以及如何最终用陶瓷散热器实现这些改进。
1 模块优化
众所周知,LED的发光效率很高,而且还因为体积很小而深受设计师偏爱。但只有当不考虑散热管理时,它们才真的“很小”。虽然与白炽灯光源高达2500℃的工作温度相比,LED光源温度要低得多。因此,很多设计师最终认识到,散热是一个大问题。尽管LED也产生热量,但它相对来说不是很高,因此散热对LED本身来说还不是一个问题。不过,驱动LED工作的半导体器件允许的工作温度低于100℃。
根据能量守恒定律,热能必须转移到周围区域。LED只能使用100℃热点和25℃环境温度之间的一个很小的温度间隙,因此只提供75 Kelvin。其结果是,需要使用一个较大的表面和powerful散热管理。
两个优化块见图1,Group 1是LED,它基本上是不能触摸的。它的中心部位是一个裸片和一个散热铜金属块,用于连接裸片与LED的底部。从散热的角度看,理想的解决办法是将裸片直接邦定到散热器上。但从大批量生产的角度来看,这一想法在商业上是不现实的。我们将LED看作是一个标准化的不能修改的“目录”的产品。它是一个黑盒子。
Group 2包含了散热器,它将热源的能量传递到空气中。通常情况下,周围的空气是自由或强制对流。散热材料越不美观,它就越需要被隐藏起来。但你隐藏的越多,冷却的效率也越低。与之相反,可以使用美观和高价值的材料。这些散热材料直接暴露在空气中,并成为看得见的产品设计的一部分。
在Groups 1和Groups 2之间的是Groups 3,它提供机械连接、电气绝缘和热传递。这似乎是矛盾的,因为大多数材料同时具有良好的导热和导电性。反之亦然,几乎每一个电气绝缘材料也是热障材料。
最好的折衷办法是将LED焊接在PCB板上,PCB再用胶水粘合到金属散热器上。这样PCB作为电路板的初始功能就可以得到维持。虽然PCB存在许多不同的热导率,但它们仍然是热转移的一个障碍。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)