近年来云计算、大数据、社交、移动等热点不断冲击和影响着服务器市场,全球服务器市场也因此呈现出持续增长的态势。我国出现数千台服务器数据中心机房,运行功率为数十兆瓦或更高(天河2号高达24兆瓦),而如何可靠安全地为这些数据中心的IDC设备供电时限制IDC设备发展的一个难点。IBM、Google、Facebook等公司在这些做了先行的研究并成功商业化。
交流和直流供电?
BCM转换器?
在现行电路中,绝大多数的负载工作在12V以下的电压下, 如硬盘马达驱动为12V,SSD为5V/3.3V,DDR工作在1.2V,CPU的核电压1.8V等。转换系统所面临的挑战都是有关高效而可靠的产生低压/大电流。HVDC也能满足这一条件,用一个BCM ®总线转换器,通过变比K为1/8或1/23的转换产生380V到47.5V或11.875V总线。Vicor的BCM总线转换器是一个正弦波振幅转换器(Sine Amplitude Converter TM, 即 SACTM),是一个零电压/零电流开关拓扑的架构,是一个隔离非稳压的DC-DC转换器。 除了输入/输出是直流电压,SAC像一个具有固定输入/输出电压比的交流变压器。SAC可以说实现98%的转换效率,同时由于SAC的软开关技术,开关频率超过了1MHz。
PRM升降电路?
根据ETSI规范,336V备份电池正常的工作范围260V-410V,当AC-DC失电情况下,备用电池总线电压因为放电而下降最低有可能为260V/8 即32V。我们需要在ETSI定义的满量程电压范围内提供适配器或均衡器来保持48V的电压轨稳定,这里Vicor提供一个零电压开关架构的升降压(Buck- Boost converter)。
这个Buck-Boost转换器实现预稳压功能模块及PRM ,在全型VI Chip 32.5mm*22mm*6.7 mm实现600W, 而在与RJ-45以太网插头大小相近的半型尺寸的VI Chip可以实现300W的功率。在这两种情况下,该结构可以保持高效率并且无缝、动态使用多个供电源,可以是高压整流柜的AC/DC,也可以算是再生能源或备用电池供电。
三种不同配电方式?
1.380V-48V升降压均衡适配器
传统的48V总线如线卡、路由器的架构的,在 交流整流柜或电池输出到380V总线经1/8转换得到一个32-50V的总线电压,经过升降压的调整实现一个48V/54V的稳定输出到板卡。 到板卡上再利用K=1/4 或1/5的IBC总线转换实现到12V/9.6V的总线,之后再通过多个nPoL分别实现CPU /DDR /GPU等供电。当然如果有AC/DC的输入设备,就需要48V到DC-AC的逆变电路。
2.380V-12V部分升降压均衡适配器
新型设计中380V通过1/8变比实现48V的总线(32-50V),硬盘/风扇类电机驱动需要一个30-60V输入范围的ZVS降转换器。CPU/GPU/ASIC/DDR等由功率分比架构FPA的PRM+VTM DC/DC转换实现。
3.380V-48V FPA VR13架构
380V通过1/8变比实现48V的总线(32-50V),硬盘/风扇类电机驱动需要一个30-60V输入范围的ZVS降转换器。CPU/GPU/ASIC/DDR等由功率分比架构FPA(Factory Power Architecture)的PRM+VTM DC/DC转换实现。
关于功率?
根据典型CPU负载与输配电源计算三种不同配电方式的效率, 而供电方式分别为AC-DC整流柜和满足ETSI的高压直流(备用电池)供电方式。利用Vicor的K=1/8或K=1/32的高压BCM可以实现对传统电路的改进,实现高效的高压直流的转换。
责任编辑:gt
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)