关键词:嵌入式实时多任务 *** 作系统、uC/OS-II、C51
引言:随着各种应用电子系统的复杂化和系统实时性需求的提高,并伴随应用软件朝着系统化方向发展的加速,在16位/32位单片机中广泛使用了嵌入式实时 *** 作系统。然而实际使用中却存在着大量8位单片机,从经济性考虑,对某些应用场合,在8位MCU上使用 *** 作系统是可行的。从学习 *** 作系统角度,uC/OS-II for 51即简单又全面,学习成本低廉,值得推广。
结语:μC/OS-II具有免费、简单、可靠性高、实时性好等优点,但也有缺乏便利开发环境等缺点,尤其不像商用嵌入式系统那样得到广泛使用和持续的研究更新。但开放性又使得开发人员可以自行裁减和添加所需的功能,在许多应用领域发挥着独特的作用。当然,是否在单片机系统中嵌入μC/OS-II应视所开发的项目而定,对于一些简单的、低成本的项目来说,就没必要使用嵌入式 *** 作系统了。
uC/OS-II原理:
uCOSII包括任务调度、时间管理、内存管理、资源管理(信号量、邮箱、消息队列)四大部分,没有文件系统、网络接口、输入输出界面。它的移植只与4个文件相关:汇编文件(OS_CPU_A.ASM)、处理器相关C文件(OS_CPU.H、OS_CPU_C.C)和配置文件(OS_CFG.H)。有64个优先级,系统占用8个,用户可创建56个任务,不支持时间片轮转。它的基本思路就是 “近似地每时每刻总是让优先级最高的就绪任务处于运行状态” 。为了保证这一点,它在调用系统API函数、中断结束、定时中断结束时总是执行调度算法。原作者通过事先计算好数据,简化了运算量,通过精心设计就绪表结构,使得延时可预知。任务的切换是通过模拟一次中断实现的。
uCOSII工作核心原理是:近似地让最高优先级的就绪任务处于运行状态。
*** 作系统将在下面情况中进行任务调度:调用API函数(用户主动调用),中断(系统占用的时间片中断OsTImeTIck(),用户使用的中断)。
调度算法书上讲得很清楚,我主要讲一下整体思路。
(1)在调用API函数时,有可能引起阻塞,如果系统API函数察觉到运行条件不满足,需要切换就调用OSSched()调度函数,这个过程是系统自动完成的,用户没有参与。OSSched()判断是否切换,如果需要切换,则此函数调用OS_TASK_SW()。这个函数模拟一次中断(在51里没有软中断,我用子程序调用模拟,效果相同),好象程序被中断打断了,其实是OS故意制造的假象,目的是为了任务切换。既然是中断,那么返回地址(即紧邻OS_TASK_SW()的下一条汇编指令的PC地址)就被自动压入堆栈,接着在中断程序里保存CPU寄存器(PUSHALL)……。堆栈结构不是任意的,而是严格按照uCOSII规范处理。OS每次切换都会保存和恢复全部现场信息(POPALL),然后用RETI回到任务断点继续执行。这个断点就是OSSched()函数里的紧邻OS_TASK_SW()的下一条汇编指令的PC地址。切换的整个过程就是,用户任务程序调用系统API函数,API调用OSSched(),OSSched()调用软中断OS_TASK_SW()即OSCtxSw,返回地址(PC值)压栈,进入OSCtxSw中断处理子程序内部。反之,切换程序调用RETI返回紧邻OS_TASK_SW()的下一条汇编指令的PC地址,进而返回OSSched()下一句,再返回API下一句,即用户程序断点。因此,如果任务从运行到就绪再到运行,它是从调度前的断点处运行。
(2)中断会引发条件变化,在退出前必须进行任务调度。uCOSII要求中断的堆栈结构符合规范,以便正确协调中断退出和任务切换。前面已经说到任务切换实际是模拟一次中断事件,而在真正的中断里省去了模拟(本身就是中断嘛)。只要规定中断堆栈结构和uCOSII模拟的堆栈结构一样,就能保证在中断里进行正确的切换。任务切换发生在中断退出前,此时还没有返回中断断点。仔细观察中断程序和切换程序最后两句,它们是一模一样的,POPALL+RETI。即要么直接从中断程序退出,返回断点;要么先保存现场到TCB,等到恢复现场时再从切换函数返回原来的中断断点(由于中断和切换函数遵循共同的堆栈结构,所以退出 *** 作相同,效果也相同)。用户编写的中断子程序必须按照uCOSII规范书写。任务调度发生在中断退出前,是非常及时的,不会等到下一时间片才处理。OSIntCtxSw()函数对堆栈指针做了简单调整,以保证所有挂起任务的栈结构看起来是一样的。
(3)在uCOSII里,任务必须写成两种形式之一(《uCOSII中文版》p99页)。在有些RTOS开发环境里没有要求显式调用OSTaskDel(),这是因为开发环境自动做了处理,实际原理都是一样的。uCOSII的开发依赖于编译器,目前没有专用开发环境,所以出现这些不便之处是可以理解的。
移植过程:
(1)拷贝书后附赠光盘sourcecode目录下的内容到C:\YY下,删除不必要的文件和EX1L.C,只剩下p187(《uCOSII》)上列出的文件。
(2)改写最简单的OS_CPU.H
数据类型的设定见C51.PDF第176页。注意BOOLEAN要定义成unsigned char 类型,因为bit类型为C51特有,不能用在结构体里。
EA=0关中断;EA=1开中断。这样定义即减少了程序行数,又避免了退出临界区后关中断造成的死机。
MCS-51堆栈从下往上增长(1=向下,0=向上),OS_STK_GROWTH定义为0
#define OS_TASK_SW() OSCtxSw() 因为MCS-51没有软中断指令,所以用程序调用代替。两者的堆栈格式相同,RETI指令复位中断系统,RET则没有。实践表明,对于MCS-51,用子程序调用入栈,用中断返回指令RETI出栈是没有问题的,反之中断入栈RET出栈则不行。总之,对于入栈,子程序调用与中断调用效果是一样的,可以混用。在没有中断发生的情况下复位中断系统也不会影响系统正常运行。详见《uC/OS-II》第八章193页第12行
(3)改写OS_CPU_C.C
我设计的堆栈结构如下图所示:
TCB结构体中OSTCBStkPtr总是指向用户堆栈最低地址,该地址空间内存放用户堆栈长度,其上空间存放系统堆栈映像,即:用户堆栈空间大小=系统堆栈空间大小+1。
SP总是先加1再存数据,因此,SP初始时指向系统堆栈起始地址(OSStack)减1处(OSStkStart)。很明显系统堆栈存储空间大小=SP-OSStkStart。
任务切换时,先保存当前任务堆栈内容。方法是:用SP-OSStkStart得出保存字节数,将其写入用户堆栈最低地址内,以用户堆栈最低地址为起址,以OSStkStart为系统堆栈起址,由系统栈向用户栈拷贝数据,循环SP-OSStkStart次,每次拷贝前先将各自栈指针增1。
其次,恢复最高优先级任务系统堆栈。方法是:获得最高优先级任务用户堆栈最低地址,从中取出“长度”,以最高优先级任务用户堆栈最低地址为起址,以OSStkStart为系统堆栈起址,由用户栈向系统栈拷贝数据,循环“长度”数值指示的次数,每次拷贝前先将各自栈指针增1。
用户堆栈初始化时从下向上依次保存:用户堆栈长度(15),PCL,PCH,PSW,ACC,B,DPL,DPH,R0,R1,R2,R3,R4,R5,R6,R7。不保存SP,任务切换时根据用户堆栈长度计算得出。
OSTaskStkInit函数总是返回用户栈最低地址。
*** 作系统tick时钟我使用了51单片机的T0定时器,它的初始化代码用C写在了本文件中。
最后还有几点必须注意的事项。本来原则上我们不用修改与处理器无关的代码,但是由于KEIL编译器的特殊性,这些代码仍要多处改动。因为KEIL缺省情况下编译的代码不可重入,而多任务系统要求并发 *** 作导致重入,所以要在每个C函数及其声明后标注reentrant关键字。另外,“pdata”、“data”在uCOS中用做一些函数的形参,但它同时又是KEIL的关键字,会导致编译错误,我通过把“pdata”改成“ppdata”,“data”改成“ddata”解决了此问题。OSTCBCur、OSTCBHighRdy、OSRunning、OSPrioCur、OSPrioHighRdy这几个变量在汇编程序中用到了,为了使用Ri访问而不用DPTR,应该用KEIL扩展关键字IDATA将它们定义在内部RAM中。
(4)重写OS_CPU_A.ASM
A51宏汇编的大致结构如下:
NAME 模块名 ;与文件名无关
;定义重定位段 必须按照C51格式定义,汇编遵守C51规范。段名格式为:?PR?函数名?模块名
;声明引用全局变量和外部子程序 注意关键字为“EXTRN”没有‘E’
全局变量名直接引用
无参数/无寄存器参数函数 FUNC
带寄存器参数函数 _FUNC
重入函数 _?FUNC
;分配堆栈空间
只关心大小,堆栈起点由keil决定,通过标号可以获得keil分配的SP起点。切莫自己分配堆栈起点,只要用DS通知KEIL预留堆栈空间即可。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)