DS2740高精度库仑计参考设计-DS2740 High-P

DS2740高精度库仑计参考设计-DS2740 High-P,第1张

Abstract: The DS2740 High-Precision Coulomb Counter IC can perform the fuel gauging funcTIon for a 1-cell Lithium-ion (Li-ion) or 3-Cell NiMH battery pack.The user has a choice of whether to mount the coulomb counter IC in the battery pack or the host system. This applicaTIon note presents two reference designs for using the DS2740 for the fuel gauge funcTIon; one where the DS2740 is mounted in the battery pack and one where the DS2740 is mounted in the host.Component choice and funcTIon for each circuit is described. Also the advantages for placement of the coulomb counter in each location are discussed.

IntroductionThe DS2740 high-precision coulomb counter is ideally suited for installation in either the host system or the battery pack of a portable electronic device requiring fuel-gauging technology. The coulomb counter provides high-precision current/net flow measurements to accurately measure battery capacity. The small footprint of it's µMAX packaging takes up little board space, and the 1µA max sleep mode supply current will not add unnecessary drain to the battery. Furthermore, the 1-Wire® interface only requires a single communication pin. Host supplied voltage and temperature measurements can be combined for a complete fuel-gauging system. This application note describes two recommended circuits for using the DS2740, one for host system installation and one for battery pack installation. Host System InstallationThe schematic in Figure 1 illustrates a possible solution for using the DS2740 in the host system of a cell phone or personal digital assistant. The circuit shows both the DS2740 and host system being powered by an external battery pack. The pack could be a single-cell Lithium or triple-cell Nickel composition. The PACK+ and PACK- terminals represent the connection to the external battery pack. The 150Ω resistor from PACK+ to VDD of the DS2740 is for ESD immunity. The resistor helps limit current spikes into the part, and protect against over-voltage conditions. The other passive component on the VDD line is the 0.1µF capacitor. This capacitor helps to filter voltage spikes and keep the voltage within the specified 2.7V to 5.5V range.

DS2740高精度库仑计参考设计-DS2740 High-P,Figure 1. DS2740 installed in the host system.,第2张
Figure 1. DS2740 installed in the host system.



The main benefit to installing the device in the host system is reduced cost. Only one device is needed in the host, rather than each battery pack having its own dedicated coulomb counter. The disadvantage is if the battery pack is removed from the host, the DS2740 will lose power. This causes the current accumulation data to be lost. Therefore, the host must periodically read and save the data from the DS2740. Battery Pack InstallationFigure 2 shows a schematic with the DS2740 mounted inside a single-cell Li+ battery pack. The PACK+, PACK-, DQ, and PIO nodes on the left represent the external contacts of the pack. As shown, the DS2740 should be installed on the contact side (as opposed to the cell side) of the protector. This prevents any unwanted charge paths through the DS2740. The protector may be any single cell protector.

DS2740高精度库仑计参考设计-DS2740 High-P,Figure 2. DS2740 installed in battery pack.,第3张
Figure 2. DS2740 installed in battery pack.

The primary differences between the pack installation, and the host installation are the PIO and DQ pins. For this example, these pins are routed to external contacts on the pack. These outside contacts require extra protection against ESD and voltage transients. The 150Ω and 330Ω resistors limit current spikes into DQ and PIO, respectively. The 5.6V Zener diodes protect the DQ and PIO pins from high voltage, yet do not interfere with normal operating voltages. Again, PIO is not necessary for device functionality and should be left open if not used. Also note that DQ is shown without a pullup resistor; this must be provided on the host side. All other components and pins were described in the host system example.

This circuit's main advantage is each cell has its own dedicated DS2740. Therefore, the coulomb count will remain accurate if the pack is removed, installed, charged or discharged. As long as the protector remains closed, and power is supplied to the DS2740, the current accumulation will continue. Each DS2740 has a unique 64-bit net address, so battery packs can also be uniquely identified. SummaryThe DS2740 is one of Dallas Semiconductor's most accurate coulomb-counting devices to date. The small µMax device is small enough to mount inside the host system or inside each battery pack, and requires only a single communication pin. Both host and battery pack applications have their own specific advantages. For host installation, cost is the big advantage, and in battery packs, dedicated hardware. Coupled with a host system providing temperature and voltage measurements, the DS2740 can build a complete fuel-gauging system.

1-Wire is a registered trademark of Maxim Integrated Products, Inc.

欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/dianzi/2491531.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2022-08-04
下一篇 2022-08-04

发表评论

登录后才能评论

评论列表(0条)

保存