作者:
Arun T. Vemuri 德州仪器 (TI) 汽车车身电子装置和照明部总经理
Kevin Stauder 德州仪器 (TI) 汽车车身电子装置和照明部系统工程师
数十年来,内燃机(ICE)一直在为 汽车以及加热和冷却系统提供动力。 随着汽车行业电气化并过渡到具有小型内燃机的混合动力汽车或完全没有发动机的全电动汽车,暖通空调 (HVAC) 系统将如何工作?
在本白皮书中,我们将介绍 48V、400V 或 800V 混合动力汽车和电动汽车中的新型加热和冷却控制模块。其中,您将通过示例和系统图了解这些模块中独特的子系统,最后我们将通过回顾这些子系统的功能解决方案来帮助您开始规划实现。内燃机在 HVAC 系统中的 工作方式在配备 ICE 的车辆中,发动机是加热 和冷却系统的基础。图 1 说明了 这一概念。
图 1. 发动机在 ICE 车辆的加热和冷却系统中起着基础性的作用。
在进行冷却时,来自风机的空气进入蒸发器,在那里制冷剂对空气进行冷却。然后,由发动机驱动的空调压缩机压缩离开蒸发器的制冷剂。类似地,在对空气进行加热时,由发动机产生的热量被传递到冷却液。该热冷却液进入加热器芯,加热器芯对将吹入车厢的空气进行加热。通过这种方法,发动机在车厢的加热和冷却中起到基础性作用。
混合动力汽车和电动汽车实现加热 和冷却的方法在混合动力汽车/电动汽车中,由于尺寸限制或不使用内燃机,需要引入两个附加部件,这些组件在 HVAC 系统中起着关键作用,如图 2 所示:
1. 无刷直流 (BLDC) 电机是一种代替发动机使空调压缩机旋转的直流电机。 2. 正温度系数 (PTC) 加热器或热泵代替发动机对冷却液进行加热。
除这些部件之外,其余的加热和冷却系统基础设施与采用 ICE 的车辆相同。如前所述,在没有发动机的情况下,需要使用 BLDC 电机和 PTC 加热器或热泵,这分别对功耗、电机和电阻加热器控制以及整个 HVAC 控制带来了挑战。控制 BLDC 电机和 PTC 加热器的电子器件在高电压混合动力汽车/电动汽车中,BLDC 电机和 PTC 加热器都使用高压电源。空调压缩机可能需要高达 10kW 的功率,而 PTC 加热器可能会消耗高达 5kW 的功率。图 3 和 4 分别是空调压缩机 BLDC 控制模块和 PTC 加热器控制模块的方框图。这两个方框图均显示 空调压缩机 BLDC 电机和 PTC 加热器由高压电池供电。此外,这些模块都使用绝缘栅双极型晶体管 (IGBT) 和相应的栅极驱动器来控制 BLDC 电机和 PTC 加热器的电源。
图 3 和 4 还说明了这两个控制模块的其余子系统之间的相似性。两个系统均包含一个电源子系统、一个栅极驱动器偏置电源、微控制器 (MCU)、通信接口以及温度和电流监控装置。这些控制模块中使用的许多子系统(例如用于通信的收发器和用于电流测量的放大器)类似于其他加热和冷却控制模块中使用的子系统。不过,电源子系统和栅极驱动器子系统是车辆加热和冷却系统中的这些控制模块所独有的。这些子系统与低压域和高压域相连接。在本白皮书的稍后部分,我们将讨论用于这些子系统的电路拓扑的功能方框图。请注意,电路拓扑的选择必须满足子系统功能以及系统设计要求,例如效率、功率密度和电磁干扰 (EMI)。
热泵
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)