利用MEMS惯性传感器改善控制

利用MEMS惯性传感器改善控制,第1张

 

  最近的传感器技术发展使得机器人和其他工业系统设计实现了革命性的进步。除了机器人以外,惯性传感器有可能改善其系统性能或功能的应用还包括:平台稳定、工业机械运动控制、安全/监控设备和工业车辆导航等。这种传感器提供的运动信息非常有用,不仅能改善性能,而且能提高可靠性、安全性并降低成本。然而,要想获得这些好处,必须克服一些障碍,尤其是许多工业应用处在恶劣的物理环境下,必须考虑温度、震动、空间限制和其他因素的影响。对工程师而言,为了从传感器获取一致的数据,将其转换成有用的信息,然后在系统的时序和功耗预算内做出反应,工程师必须拥有多种技术领域的知识和经验,并且遵循良好的设计规范。

  了解问题

  来自惯性传感器的信息经过处理和积分后,可以提供许多不同类型的运动、位置和方向输出(见图1)。每种类型的运动都涉及到一系列应用相关的复杂因素,对此必须加以了解。工业控制应用就是一个很好的例子,某种形式的指向或转向设备对这些应用十分有用。倾斜或角度检测常常是此类应用的核心任务,在最简单的范例中,机械气泡传感器便可满足需要。然而,在明确传感器需求之前,需要分析最终系统的完整运动动力学特性、环境、寿命周期和可靠性预期。

  

 

  图1 当今的惯性传感器能够检测多种运动类型

  如果系统的运动相对而言为静态,简单的角度传感器可能就足够了,但实际的技术决策取决于响应时间、冲击和震动、尺寸、整个使用寿命期间的性能漂移。此外,许多系统涉及到多种类型的运动(如旋转和加速度等),而且往往在多个轴上工作,这就需要考虑将多种类型的传感器结合在一起。

  一旦知道正确的传感器类型和技术后,挑战便转移到了解和最终补偿传感器对环境(温度、震动、冲击、安装位置、时间和其他变量)的反应。环境补偿涉及到额外的电路测试、校准和动态调整,而每种类型的传感器,甚至每个传感器都是独一无二的,因此这又会带来补偿不足或过度的额外风险,除非工程师非常了解传感器特性。最后这一点驱使许多设计工程师采用完全集成的传感器解决方案,以便消除运用和实施过程中的障碍。

  线性速率抑或角速率

  惯性传感器有多种类型。MEMS(微机电系统)传感器是最完善的传感器类型之一,已经使众多应用受益。15年前,MEMS线性加速度传感器(加速度计)彻底革新了汽车安全气囊系统。自此以后,从笔记本电脑硬盘保护到游戏控制器中更为直观的用户运动捕捉,各种独特的功能和应用得以实现。

  根据谐振器陀螺仪的原理,MEMS结构也可提供角速率检测。两个多晶硅检测结构各含一个“扰动框架”,通过静电将扰动框架驱动到谐振状态,以产生必要的运动,从而在旋转期间产生科氏力。在各框架的两个外部极限处(与扰动运动正交)是可动指,放在固定指之间,形成一个容性捡拾结构来检测科氏运动。当MEMS陀螺仪旋转时,可动指的位置变化通过电容变化进行检测,由此得到的信号送入一系列增益和解调级,产生电速率信号输出。某些情况下,该信号还会经转换,送入一个专有数字校准电路。

  传感器内核周围的集成度和校准由最终性能要求决定,但在许多情况下,可能需要进行运动校准,以便实现最高的性能水平和稳定性。

  

欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/dianzi/2504450.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2022-08-05
下一篇 2022-08-05

发表评论

登录后才能评论

评论列表(0条)

保存