本文在抽头延时神经网络(TDNN)的基础上,提出了一种可用于高功率放大器的数据捕获、分析、建模和线性化的有效数字预畸变过程。利用基带信号分析,对大功率RF放大器的记忆效应进行了识别与建模。
当前研究工作越来越多地关注大功率放大器线性化中的记忆效应,尤其是在蜂窝基站收发系统中的应用。尽管对功率放大器线性化已经进行了很多研究,具有恶化线性电路性能的长记忆强非线性系统的线性化,仍然存在许多具有挑战性的课题,这些问题是与记忆引起的复杂非线性畸变相关。
利用许多不同的函数或算法,已经开发出多种RF功率放大器性能建模方法。最近,研究人员开始应用人工神经网络进行RF大功率放大器的基带性能建模,甚至将其应用于数字预畸变技术,这是由于在快速非线性分析,高可复用性以及任意非线性系统通用性上取得的进展。由于基本的神经网络结构并不能充分反映建模中的记忆效应,因此引入了带有延迟抽头的加强型神经网络。
本文开发了一种有效的线性化过程,该过程采用TDNN来进行精确的性能建模和功率放大器的线性化过程。另外,使用相同的TDNN结构,选择间接学习过程来提取一个功率放大器逆模型。此逆TDNN模型直接用作功率放大器预畸变器。针对WCDMA下行链路信号,对带和不带延时抽头的线性化结果进行了比较分析。使用WCDMA下行链路信号对模型结构和线性电路的正确性进行了验证。
用于测试的硬件配置
功率放大器,简称“功放”。很多情况下主机的额定输出功率不能胜任带动整个音响系统的任务,这时就要在主机和播放设备之间加装功率放大器来补充所需的功率缺口,而功率放大器在整个音响系统中起到了“组织、协调”的枢纽作用,在某种程度上主宰着整个系统能否提供良好的音质输出。
利用三极管的电流控制作用或场效应管的电压控制作用将电源的功率转换为按照输入信号变化的电流。因为声音是不同振幅和不同频率的波,即交流信号电流,三极管的集电极电流永远是基极电流的β倍,β是三极管的交流放大倍数,应用这一点,若将小信号注入基极,则集电极流过的电流会等于基极电流的β倍,然后将这个信号用隔直电容隔离出来,就得到了电流(或电压)是原先的β倍的大信号,这现象成为三极管的放大作用。经过不断的电流及电压放大,就完成了功率放大。
为了获得功率放大器的动态AM-AM和AM-PM特性,图(1)所示测试配置采用Agilent Technology公司的电子信号发生器(ESG)样机E4438C ,矢量信号分析仪(VSA)软/硬件样机89641A和高级设计系统(ADS)仿真软件。在测试中用ESG 生成WCDMA 信号,并加于放大器。对从功率放大器输出的WCDMA信号进行下变频后,VSA 将基带I和Q路信号收集起来。通过将输出I/Q信号与输入信号相比较,可以确认动态基带AM-AM和AM-PM特性。ADS数字包通过GPIB和IEEE1394接口控制测试系统。ESG为VSA 提供了用于同步的外部触发和参考信号。功率放大器最末级由Freescale的 170 W-PEP LDMOSFET组成的两个推挽放大器并行连接来实现,具有340 W-PEP。 图(2)给出了放大器最末级的图片,其中包括输出端的隔离器和偏置网络。最末级由MRF9045,45W-PEP LDMOSFET驱动。整个放大器链路具有49 dB 的功率增益和54 dBm的饱和输出功率。
图(1)获取输入与输出基带I/Q信号的 测试装置
图(2)放大器的最后形态
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)