(文章来源:微迷网)
据麦姆斯咨询介绍,新的成像应用正在蓬勃发展,从“工业4.0中”的协作机器人,到无人机消防或用于农业,再到生物特征面部识别,再到家庭中的护理点手持医疗设备。出现这些新应用程序的一个关键因素是,嵌入式视觉比以往任何时候都更普及。嵌入式视觉不是一个新概念;它只是定义了一个系统,其中包括一个视觉设置,在没有外部计算机的情况下控制和处理数据。它已广泛应用于工业质量控制,最为人熟悉的例子比如“智能相机”。
近年源于消费类市场经济适用硬件器件的开发,相较于以往使用电脑的方案,这些器件大幅度减小了材料清单(BOM)成本和产品体积。举个例子,小型系统集成商或OEM现在能够小批量采购诸如NVIDIA Jetson的单板机或模块系统;而较大型的OEM则可以直接获得如高通骁龙(Qualcomm Snapdragon)或英特尔(Intel)Movidius Myriad 2 等图像信号处理器。在软件级方面, 市面软件库能够加快专用视觉系统的开发速度,减小配置难度, 即便是针对小批量生产。
第二个推动嵌入式视觉系统发展的变化是机器学习的出现,它使实验室中的神经网络能够接受培训,然后直接上传到处理器中,以便它能够自动识别特征,并实时做出决定。
能够提供适用于嵌入式视觉系统的解决方案,对于面向这些高增长应用的成像企业来说至关重要。图像传感器由于能够直接影响嵌入式视觉系统的效能和设计,因而在大规模引进中有重要角色,而它的主要推动因素可概括为:更小尺寸、重量、功耗和成本,英语简称为“SWaP-C”(decreasing Size, Weight, Power and Cost)。
嵌入式视觉的一些偏锋延展概念,引导我们对图像传感器进行全面定制,以3D堆叠方式集成所有处理功能(芯片上的系统) 以实现优化性能和功耗。不过,开发这一类产品的成本十分高昂,能够达到这一集成水平的全定制传感器长远来说并非完全不可能,而现在我们正处于一个过渡阶段,包含将某些功能直接嵌入到传感器,以减省计算负载和加快处理时间。
例如在条形码阅读应用,Teledyne e2v公司已拥有专利技术,将包含一个专有条形码识别算法的嵌入式功能加进传感器芯片,这算法可以找出每一帧幅内的条形码位置,让图像信号处理器只需聚焦于这些范围,提高数据处理效率。
另一个减少处理负载和优化“良好”数据的功能是Teledyne e2v的专利快速曝光模式,该模式使传感器能够自动校正曝光时间,以避免照明条件变化时出现饱和。 这项功能优化了处理时间,因为它适应了单帧中光照的波动,而且这种快速反应最大限度地减少了处理器需要处理的“坏”图像的数量。
这些功能通常是特定的,需要很好地理解客户的应用程序。只要对应用程序有足够的了解,就可以设计多种其他片上功能来优化嵌入式视觉系统。嵌入式视觉系统的另一主要要求是能够配合狭小空间,或是重量要小,以便用于手持式设备/或延长电池推动产品的工作时间。这就是现在大部份嵌入式视觉系统使用只有1MP到5MP的低分辨率小型光学格式传感器的原因。
减小像素芯片的尺寸只是减小图像传感器占位面积和重量的第一步。现在的65nm工艺让我们能够把全局快门像素尺寸减小至2.5μm而不损光电性能。这种生产工艺使得诸如全高清全局快门CMOS图像传感器能够配合手机市场要求小于1/3英寸的规格。
减小传感器重量和占位面积的另一主要技术是缩小封装尺寸。芯片级封装在过去数年在市场迅速成长,在移动、车载电子和医疗应用中特别明显。相较用工业市场常用的传统陶瓷(Ceramic Land Grid Array,简称CLGA)封装,芯片级扇出封装能够实现更高密度连接,因而是嵌入式系统图像传感器轻量化小型化挑战的出色解决方案。例如Teledyne e2v的Emerald 2M图像传感器芯片级封装,侧高只是陶瓷封装的一半,而尺寸则减小30%。
展望未来,我们预期新的技术能进一步实现嵌入式视觉系统所需的更小传感器尺寸。
三维堆栈是让半导体器件生产的创新技术,它的原理是在不同晶圆上制造各种电路芯片,然后利用铜对铜连接和过硅通孔(Through Silicon Vias,简称TSV)技术进行堆栈和互联。三维堆栈因为是多层重迭芯片,允许器件实现比传统传感器更小的占位尺寸。而在三维堆栈传感器中, 读出和处理芯片可以置于像素芯片和行译码器的下方。这样,传感器的占位尺寸因缩小的读出和处理芯片而减小,并且可以在传感器中加入更多处理资源以减小图像信号处理器的载荷。
不过,要让三维堆栈技术在图像传感器市场获得广泛应用,现在还面对着一些挑战。首先这是一个新兴的技术,其次是它的成本较高,因为需要附加的工艺步骤,使得芯片成本比使用传统技术的芯片高三倍以上。因为三维埋迭将主要是高性能或非常小占位尺寸的嵌入式视觉系统的选择。
总结而言,嵌入式视觉系统可以归纳为一种“轻量”视觉技术,可以用于包括OEM、系统集成商和标准相机厂商等不同类型企业。“嵌入式 “是一个可用于不同应用的概括性描述,因而不能开出列表说明它的特征。不过优化嵌入式视觉系统有几个适用法则,就是一般而言,市场推动力并非来自超级快的速度或超高的灵敏度,而是尺寸、重量、功耗和成本。图像传感器是这些条件的主要推手,所以需要小心选择合适的图像传感器,以便于优化嵌入式视觉系统的总体性能。合适的图像传感器能为嵌入式设计人员带来更多灵活性,节省材料清单成本,减小照明和光学组件的占位面积。
(责任编辑:fqj)
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)