CNN模型思路、加速算法设计及其实验样例

CNN模型思路、加速算法设计及其实验样例,第1张

自从AlexNet一举夺得ILSVRC 2012 ImageNet图像分类竞赛的冠军后,卷积神经网络(CNN)的热潮便席卷了整个计算机视觉领域。CNN模型火速替代了传统人工设计(hand-crafted)特征和分类器,不仅提供了一种端到端的处理方法,还大幅度地刷新了各个图像竞赛任务的精度,更甚者超越了人眼的精度(LFW人脸识别任务)。CNN模型在不断逼近计算机视觉任务的精度极限的同时,其深度和尺寸也在成倍增长。
 

表1 几种经典模型的尺寸,计算量和参数数量对比

Model Model Size(MB) Million
Mult-Adds Million
Parameters
AlexNet[1] >200 720 60 
VGG16[2] >500 15300 138 
GoogleNet[3] ~50 1550 6.8 
IncepTIon-v3[4] 90-100 5000 23.2

随之而来的是一个很尴尬的场景:如此巨大的模型只能在有限的平台下使用,根本无法移植到移动端和嵌入式芯片当中。就算想通过网络传输,但较高的带宽占用也让很多用户望而生畏。另一方面,大尺寸的模型也对设备功耗和运行速度带来了巨大的挑战。因此这样的模型距离实用还有一段距离。

在这样的情形下,模型小型化与加速成了亟待解决的问题。其实早期就有学者提出了一系列CNN模型压缩方法,包括权值剪值(prunning)和矩阵SVD分解等,但压缩率和效率还远不能令人满意。

近年来,关于模型小型化的算法从压缩角度上可以大致分为两类:从模型权重数值角度压缩和从网络架构角度压缩。另一方面,从兼顾计算速度方面,又可以划分为:仅压缩尺寸和压缩尺寸的同时提升速度。

本文主要讨论如下几篇代表性的文章和方法,包括SqueezeNet[5]、Deep Compression[6]、XNorNet[7]、DisTIlling[8]、MobileNet[9]和ShuffleNet[10],也可按照上述方法进行大致分类:

表2 几种经典压缩方法及对比

Method Compression Approach Speed ConsideraTIon
SqueezeNet architecture No 
Deep Compression weights No 
XNorNet weights Yes 
DisTIlling architecture No 
MobileNet architecture Yes 
ShuffleNet architecture Yes

一、SqueezeNet

1.1 设计思想

SqueezeNet是F. N. Iandola,S.Han等人于2016年的论文《SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and < 0.5MB model size》中提出的一个小型化的网络模型结构,该网络能在保证不损失精度的同时,将原始AlexNet压缩至原来的510倍左右(< 0.5MB)。

SqueezeNet的核心指导思想是——在保证精度的同时使用最少的参数。

而这也是所有模型压缩方法的一个终极目标。

基于这个思想,SqueezeNet提出了3点网络结构设计策略:

策略 1.将3x3卷积核替换为1x1卷积核。

这一策略很好理解,因为1个1x1卷积核的参数是3x3卷积核参数的1/9,这一改动理论上可以将模型尺寸压缩9倍。

策略 2.减小输入到3x3卷积核的输入通道数。

我们知道,对于一个采用3x3卷积核的卷积层,该层所有卷积参数的数量(不考虑偏置)为:

式中,N是卷积核的数量,也即输出通道数,C是输入通道数。

因此,为了保证减小网络参数,不仅仅需要减少3x3卷积核的数量,还需减少输入到3x3卷积核的输入通道数量,即式中C的数量。

策略 3.尽可能的将降采样放在网络后面的层中。

在卷积神经网络中,每层输出的特征图(feature map)是否下采样是由卷积层的步长或者池化层决定的。而一个重要的观点是:分辨率越大的特征图(延迟降采样)可以带来更高的分类精度,而这一观点从直觉上也可以很好理解,因为分辨率越大的输入能够提供的信息就越多。

上述三个策略中,前两个策略都是针对如何降低参数数量而设计的,最后一个旨在最大化网络精度。

1.2 网络架构

欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/dianzi/2509360.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2022-08-05
下一篇 2022-08-05

发表评论

登录后才能评论

评论列表(0条)

保存