人脸识别是基于人的脸部特征,对输入的人脸图象或者视频流.首先判断其是否存在人脸,如果存在人脸,则进一步的给出每个脸的位置、大小和各个主要面部器官的位置信息。并依据这些信息,进一步提取每个人脸中所蕴涵的身份特征,并将其与已知的人脸进行对比,从而识别每个人脸的身份。
人脸识别主要功能分析
一、人脸捕获与跟踪功能
人脸捕获是指在一幅图像或视频流的一帧中检测出人像并将人像从背景中分离出来,并自动地将其保存。人像跟踪是指利用人像捕获技术,当指定的人像在摄像头拍摄的范围内移动时自动地对其进行跟踪。
二、人脸识别比对
人脸识别分核实式和搜索式二种比对模式。核实式是对指将捕获得到的人像或是指定的人像与数据库中已登记的某一对像作比对核实确定其是否为同一人。搜索式的比对是指,从数据库中已登记的所有人像中搜索查找是否有指定的人像存在。
三、人脸的建模与检索
可以将登记入库的人像数据进行建模提取人脸的特征,并将其生成人脸模板(人脸特征文件)保存到数据库中。在进行人脸搜索时(搜索式),将指定的人像进行建模,再将其与数据库中的所有人的模板相比对识别,最终将根据所比对的相似值列出最相似的人员列表。
四、真人鉴别功能
系统可以识别得出摄像头前的人是一个真正的人还是一幅照片。以此杜绝使用者用照片作假。此项技术需要使用者作脸部表情的配合动作。
五、图像质量检测
图像质量的好坏直接影响到识别的效果,图像质量的检测功能能对即将进行比对的照片进行图像质量评估,并给出相应的建议值来辅助识别。
人脸识别实际应用中问题关注
人脸识别技术在实际应用中,要注意以下几个重要问题:一、年龄变化
不同年龄的人脸有较大的差别。身份z是以前照的,在逃犯的照片也是以前的,因此,在公安部门的实际应用中,年龄问题是一个最突出的问题。
二、姿态变化
这一问题在活动人脸的识别中更为突出。一般的,主要测试左右角度的识别率。当前的水平是:±10o可以达到较高的识别率。
三、不同介质
采集人脸图像的设备较多,主要有扫描仪(照片)、数码相机、摄像机。由于成像的机理不同,形成了同类人脸图像的识别率较高而不同类别间人脸图像的识别率较低的情况。随着人脸识别技术的发展,这一问题也将逐步得到解决。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)