随着无线通信技术的迅猛发展,无线终端小型化、低功耗、低成本、高性能已成为射频集成电路(RFIC)发展的必然趋势。以往的MOS管高频性能相对较差,传统的射频收发机主要采用GaAs、BiCMOS、Bipolar工艺实现,但价格昂贵,且不利于与CMOS 数字基带部分单片集成。近年来随着亚微米、深亚微米CMOS技术的日趋成熟、截止频率fT不断提高,CMOS工艺在性能上已经能满足RF需要,且CMOS 工艺具有成本低、集成度高、功耗小等特点,因此CMOS RFIC已成为国际上的研发热点。
在接收机设计中,要得到良好的总体系统性能,关键在于性能优越的前端, 低噪声放大器(LNA)是其中最关键的电路之一。LNA是接收电路的第一级,直接面对天线接收的包含各种噪声的微弱信号,其特性对整个系统的噪声性能产生直接影响。LNA需要具有良好的噪声系数,并提供足够的增益,以确保整个接收系统具有最小NF;同时当接收信号较大时,应有足够的线性度以减小信号失真。现代移动通信设备的普及使LNA低功耗设计变得日益重要,文献提出的PCSNIM技术是目前最佳的低功耗窄带LNA优化设计技术,能在低功耗限制下,同时使噪声性能、输入匹配得到优化,但PCSNIM技术还有不足之处。本文综合考虑增益、噪声、功耗、线性度、匹配等指标对整个收发系统的影响,进一步改善LNA电路结构,以获得最佳的系统性能。
本文以文献中的研究成果为出发点,对SNIM和PCSNIM进行改进,利用SMIC RF 0.13μm工艺,实现应用于IEEE802.11a WLAN的单片集成LNA。模拟数据显示,该LNA功耗仅为3mW,增益14.3dB,噪声系数约为2.2dB,IIP3大于-3.6dBm,S11约为-23dB。通过设计实例仿真和测试对比,验证了理论分析的正确性。本文方法对低功耗LNA设计有一定指导意义。
1、低功耗LNA设计方法
1.1 SNIM结构LNA分析
图1很容易实现输入阻抗匹配,从信号源看到的网络输入阻抗Zin为:
其中Lg、Ls为片上平面螺旋电感,M1是共源放大管,共栅管M2起隔离作用,减少M1栅漏电容的密勒效应。式(1)表明,当:
没有优化的SNIM电路中最佳噪声阻抗都远远大于源阻抗,所以可以利用式(6)、式(7)中Zopt与Cgs成反比的特点,增加M1管的尺寸以增大Cgs、减小Zopt,最终实现电路的噪声匹配。而增大M1的尺寸意味着要增加功耗(为了保证M1、M2都工作在饱和区且有一定的电压裕度,M1管的栅源电压可以变化的范围很小)。所以利用SNIM技术设计的LNA都有相当大的功耗,这不能满足对低功耗电路的要求。
1.2 PCSNIM 结构LNA分析
根据上面推导分析,可以在不改变M1管尺寸的条件下,在M1管栅源上并联电容C1以间接增大栅源电容(如图2),实现功率约束下的噪声和输入匹配。
从信号源看到的网络输入阻抗为:
由上述推导知:电容反馈的引入会使源极负反馈电感Ls增大,电感Ls增大导致系统增益下降及噪声性能在一定程度上的恶化;电容反馈的引入还会使系统的等效跨导减小,导致系统增益减小20logk;使系统的截止频率减小为原来的1/k,一定程度上恶化了系统的噪声性能。
综上所述,虽然利用PCSNIM技术实现了功耗约束下的输入匹配和噪声优化,但付出的代价也很大,特别是在低功耗要求下系统增益减小和系统高频特性的恶化[1]。
2、IPCSNIM 结构LNA分析
由上面的分析可以看出:矛盾的关键在于,并联电容C1的引入虽然实现了功耗约束下的输入匹配和噪声优化,但也导致系统增益下降和高频特性恶化。而Ls主要起输入阻抗匹配作用,对系统的噪声特性影响很小。所以可以改变并联电容C1的位置以有效解决这个矛盾。
改进方案如图3所示。其中R1、M3为M1提供直流工作点,R2隔离R1和M3的噪声对M1的影响,R2越大越好,一般为兆欧量级;电容C2作用与C1类似,起到降低最佳噪声阻抗的作用如式(9)、式(10)。
从信号源看到的网络输入阻抗为:
其中C2(约100fF)与PCSNIM中的C1相等。
源电感LS的主要作用是使输入阻抗产生50?赘的实部,实现输入阻抗匹配。理想电感理论上不影响系统的Re[Zopt],如式(6)、式(9);LS很小(0.7nH),对Im[Zopt]的影响可以忽略不计,如式(7)、式(10)。因此改进电路的最佳噪声阻抗可以利用式(9)、式(10)计算。
3、设计事例和模拟结果
在实际芯片制造中,一般片上电阻的误差很大,约20%,R1的波动直接影响系统的直流工作点,对系统的整体性能有很大影响;且R1约为1.5kΩ,使用片上电阻会占用较大的芯片面积。为了避免上述问题,可以用MOS电阻M4取代R1。这样不仅节省了芯片面积,而且可以使电阻R1的精确度大大提高。
图2中的C2很小(只有100fF左右),实际片上电容越小,误差越大,但是C2的波动对噪声性能影响很大。为了避免C2波动对系统性能的影响,用M5 MOS电阻替代R2,利用M5源端到栅和衬底的寄生电容取代C2。这样M5不仅可以像R2那样起到噪声隔离的目的,而且可以完全取代C2。这样大大节省了芯片面积,简化了系统的复杂性。综合上述分析,图4 给出了完整的低功耗LNA设计方案。
以下仿真结果是在SMIC RF 0.13μm工艺、单片集成架构、5.5GHz工作频率、1V工作电压下完成的。模拟结果对比如图5、图6、图7所示。
本文在对传统SNIM和PCSNIM结构分析的基础上,针对SNIM功耗过大和PCSNIM增益较小的缺点,提出了一种新的低功耗LNA设计架构。该方案在功耗、噪声和PCSNIM相当的条件下,充分弥补了PCSNIM增益过小的缺点,实现了与高功耗SNIM相当的增益。同时还实现了最优的输入阻抗匹配特性和高频特性。理论分析和ADS 仿真结果十分吻合,达到了预期设计目标。
责任编辑:gt
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)