基于SVPWM的感应电机控制仿真设计

基于SVPWM的感应电机控制仿真设计,第1张

  1 引言

  随着电力电子技术和微电子技术的发展,脉宽调制技术(PWM)和正弦脉宽调制技术(SPWM)在电机控制系统中已经得到越来越多的应用。使用SPWM 来控制电机系统,电路结构简单,成本较低,但系统性能不高,电压利用率不高,谐波成分较大。近年来电机的空间矢量理论被引入电机控制系统中,形成了空间矢量脉宽调制技术(SVPWM),其原理是就是利用逆变器各桥臂开关控制信号的不同组合,使逆变器的输出空间电压矢量的运行轨迹尽可能接近圆形。SVPWM 与常规的SPWM 相比,能明显减小逆变器输出电压的谐波成分,降低脉动转矩,而且有较高的电压利用率,更易于数字实现,因而在交流感应电机控制中,应用前景十分看好。

  2 SVPWM 脉宽调制原理

  2.1 八个电压空间矢量与扇区划分

  空间矢量脉宽调制SVPWM 实际上对应于交流感应电机中的三相电压源逆变器的功率器件的一种特殊的开关触发顺序和脉宽大小的组合。在采用三相逆变器对异步电机供电时,根据逆变器的工作原理可以知道,逆变桥共有23 =8 种状态,若将逆变器的八种状态用电压空间矢量来表示,则形成8 个基本的电压空间矢量,其中6 个非零矢量,2 个零矢量,每两个电压矢量在空间相隔60o,如图1 所示[2] 。SVPWM 技术的目的是通过与基本的空间矢量对应的开关状态的组合得到一个给定的定子参考电压矢量。

  基于SVPWM的感应电机控制仿真设计,基本的空间矢量与扇区示意图,第2张

  2.2 SVPWM 的实现

  SVPWM 信号的实时调制需要定子参考电压矢量的二维静止坐标系α轴和β轴的分量uα。 s 、uβ。 s 以及PWM 周期Tpwm 作为输入,其产生框图如图2 所示。

  基于SVPWM的感应电机控制仿真设计,SVPWM 产生框图,第3张

  图2 SVPWM 产生框图

  2.2.1 相邻两矢量作用时间的确定

  定义如下X、Y、Z 三个变量:基于SVPWM的感应电机控制仿真设计,三个变量,第4张

  参考电压矢量位于被基本空间矢量所包含的扇区中时,矢量作用时间的相对值T1 和T2 可以用X,Y 或Z 表示,它们的对应关系如表1 所示。表1T1、T2 与X、Y、Z 的对应关系表

  表1 T1、T2 与X、Y、Z 的对应关系表

  基于SVPWM的感应电机控制仿真设计,表1T1、T2 与X、Y、Z 的对应关系表,第5张

  对不同扇区的T1、T2,按表1 所示取值,还要对其进行饱和判断:如果T1+T2>Tpwm, 则T1= T1*Tpwm/(T1+ T2),T2= T2*Tpwm/(T1+ T2)。

  2.2.2 判断定子参考电压矢量所在扇区

  定义三个参考量Vref1 、Vref2 、Vref3 ,令Vref 1 =X;Vref 2 =.Z;Vref 3 =.Y 。

  如果Vref1>0,则A=1,否则A=0;如果Vref2>0,则B=1,否则B =0;如果Vref3>0,则C=1,否则C =0。设N =A +2B +4C ,则N 与扇区数的对应关系如表2 所示。

  基于SVPWM的感应电机控制仿真设计,N 与扇区数的对应关系,第6张

  2.2.3 确定比较器的切换点

  定义:基于SVPWM的感应电机控制仿真设计,定义,第7张

  经过上式计算就可得到SVPWM 的参考调制信号,最后根据扇区确定电压空间矢量切换点Tcm1、Tcm2、Tcm3,如表3 所示。

欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/dianzi/2527389.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2022-08-05
下一篇 2022-08-05

发表评论

登录后才能评论

评论列表(0条)

保存