嵌入式Linux内核的驱动程序开发是怎样的

嵌入式Linux内核的驱动程序开发是怎样的,第1张

Linux设备驱动程序在Linux内核源代码中占有很大比例,从2.0、2.2到 2.4版本的内核,源代码的长度日益增加,其实主要是设备驱动程序在增加。它是一个遵循POSIX标准的免费 *** 作系统。具有BSD和SYSV的扩展特性。与其他 *** 作系统相比,嵌入式Linux系统以其可应用于多种硬件平台、内核高效稳定、源码开放、软件丰富、网络通信和文件管理机制完善等优良特性而正被作为研究热点,越来越多的研究人员采用Linux平台来开发自己的产品。

基于嵌入式Linux内核的系统设备驱动程序开发设计

设备驱动程序的编写

设备驱动程序是linux内核的一部分,是 *** 作系统内核和机器硬件之间的接口,它由一组函数和一些私有数据组成,是连接应用程序与具体硬件的桥梁。Linux的一个基本特点是它对硬件设备的管理抽象化,系统中的每一个设备都用一个特殊的文件来表示。所有的硬件设备都像普通的文件一样看待,使用与 *** 作系统相同的标准系统来进行打开、读写和关闭。

嵌入式Linux内核的驱动程序开发是怎样的,嵌入式Linux内核的驱动程序开发是怎样的,第2张

在Linux *** 作系统下有3类主要的设备文件类型:块设备、字符设备、网络设备。字符设备是指存取时没有缓存的设备。可像文件一样访问字符设备,字符设备驱动程序负责实现这些行为。系统的控制台和并口就是字符设备的例子,它们可以很好地用“流”来描述。块设备是文件系统的宿主,如磁盘。 Linux允许像字符设备那样读取块设备——允许一次传输任意数目的字节。结果是,字符设备和块设备读取数方式一致。而网络设备不同于字符设备和块设备, 它面向的上一层不是文件系统而是网络协议层,是通过BSD套接口访问数据。与设备相对应的是三类设备驱动程序,字符设备驱动程序、块设备驱动程序、网络设备驱动程序。

字符设备驱动程序、块设备驱动程序与网络设备驱动程序的结构体是不同的。

在linux 源代码linux/ include / linux/ fs. h中定义了字符设备和块设备驱动程序中必须使用的file_operaTIons结构,每个设备驱动都实现这个接口所定义的部分或全部函数。随着内核的不断升级, file_operaTIons结构也越来越大,不同的版本的内核会稍有不同。file_operaTIons定义如下:

struct file_operaTIons{

int( * lseek) ( struct inode * , struct file * , off_t , int) ; int( *release) ( struct inode * , struct file * ) ;

int( * read) ( struct inode * , struct file * , char * , int) ; int( * fsync) ( struct inode *, struct file * ) ;

int( *write) ( struct inode * , struct file * , const char *, int) ; int( * fasync) ( struct inode * , struct file *, int) ;

int( * readdir) ( struct inode , struct file , void * , dilldir) ; int( *check_media_change) ( kdev_t dev) ;

int(*select) ( struct inode *, struct file * , int, select_table * ) ; int( * revalidate) ( kdev_t dev) ; };

int ( * ioctl) ( struct inode * , struct file *, unsigned int, unsigned long) ;

int( *mmap) ( struct inode * , struct file * , struct vm_area_struct * ) ;

int( * open) ( struct inode *, struct file *) ;

应用程序只有通过对设备文件的open、release、read、write、ioctl等才能访问字符设备和块设备。用户自己定义好 file_operaTIons结构后,编写出设备实际所需要的各 *** 作函数,对于不需要的 *** 作函数用NULL初始化,这些 *** 作函数将被注册到内核,当应用程序对设备相应的设备文件进行文件 *** 作时,内核会找到相应的 *** 作函数,并进行调用。如果 *** 作函数使用NULL, *** 作函数就进行默认处理。

对于字符设备而言,llseek( ),read( ),write(),ioctl( ),open( ),release( )这些函数是不可缺的;对于块设备,open( ),release( ),ioctl(),check_media_change( ),revalidate( )是不可缺少的。

网络设备结构体 net_device 定义在 includelinuxnetdevice.h 里,如下所示:

struct net_device

{

char name ; int (*init)(struct

net_device *dev);

unsigned short flags ; int (*open)

(struct net_device *dev);

unsigned long base_addr; int

(*stop)(struct net_device *dev)

unsigned int irq ; int

(*hard_start_xmit)(struct sk_buff *skb,

unsigned char dev_addr; struct

net_device *dev);

unsigned char addr_len; int

(*set_mac_address)( struct net_device

unsigned long trans_start; *dev,void* addr);

……

}

定义好net_device结构体后,根据实际情况编写 *** 作函数,其中hard_start_xmit()函数是用来发送数据的,set_mac_address()是进行网络参数设置的。

当linux初始化时将调用初始化函数int device_init( ),该函数包括以下内容:

注册所用设备。linux用设备号来标识字符设备和块设备。设备号分为主设备号和从设备号,最终形成设备接点。设备节点在访问字符设备和块设备的设备驱动程序时将使用。通常主设备号标识设备对应的驱动程序,大多数设备是“一个主设备号对应一个驱动程序”,如:虚拟控制台和串口终端由驱动程序4管理。次设备号由内核使用,用于确定设备文件所指的设备。字符设备和块设备注册时必须先定义好设备号。

字符设备注册函数如下:

int register_chrdev(unsigned int major ,const char *name, struct file_oprations *fops);

其中 major是主设备号。

由于对网络设备驱动程序的访问不需要设备节点,它的注册函数如下:

int register_netdev(struct net_device *dev)

注册设备所用的中断。中断在现代计算机结构中有重要的地位, *** 作系统必须提供程序响应中断的能力。一般是把一个中断处理程序注册到系统中去。 *** 作系统在硬件中断发生后调用驱动程序的处理程序。

注册中断所用的函数如下:

int request_irq (unsigned irq,void(*handler)(int,void*,struct pt_regs*),unsigned long flags,const char*device,void* dev_id);

其中,irq是中断向量;handler是中断处理函数;flags是中断处理中的掩码;devices是设备名;dev_id是在中断共享使用的id。

当linux不使用该设备时,就要调用清除函数void_devicie_exit ( ),它同初始化函数相对应的,主要是:

注销设备,字符设备注销函数如下:

int unregister_chrdev(unsigned int major ,const char *name, struct file_oprations *fops);

注销中断,注销中断所用的函数如下:

int free_irq (unsigned irq,void(*handler)(int,void*,struct pt_regs*),unsigned long flags,const char*device,void* dev_id);

释放资源,模块初始化和清除函数采用module_init(device_init),module_exit(device_exit) 形式

编写服务子程序

中断服务子程序,又称为驱动程序的下半部分。在Linux系统中。并不是直接从中断向量表中调用设备驱动程序的中断服务子程序,而是由Linux系统来接收硬件中断,再由系统调用中断服务子程序。中断可以产生在任何一个进程运行的时候,因此在中断服务程序被调用的时候。不能依赖于仟何进程的状态,也就不能调用任何与进程运行环境相关的函数。因为设备驱动程序一般支持同一类型的若干设备,所以一般在系统调用中断服务程序的时候,都带有一个或多个参数,以唯一标识请求服务的设备。

设备驱动程序的使用

直接将驱动程序编译进linux内核

将设备驱动程序复制到 linux/drivers相关的子目录下,比如字符设备驱动程序 就放在linux/drivers/char下。

修改linux/drivers相关的子目录的Makefile,

如obj-$(config_dev_driver) +=dev_driver.o,这样在编译内核时将会编译dev_driver.c,生成 dev_driver.o.

对内核进行重新编译时,进行相关的配置,比如要使用AT91RM9200的UART,就要如下配置:

Character devices -》 Serial drivers -》AT91RM9200 serial port support

将驱动程序编译成驱动模块

在设备驱动程序中要有两个重要函数:

module_init(dev_init),module_exit(dev_exit)

利用相应的交叉编译器以及编译命令将驱动程序dev_driver.c编译成dev_driver.o 这样的动态驱动模块。利用insmod命令给系统安装驱动模块,如果在/dev目录下没有相应的设备文件,就可以使用mknod创建一个设备文件。利用 rmmod命令卸载驱动模块,设备文件的删除可以用rm命令。

结语

设备驱动程序的开发是在Linux环境中最复杂的编程任务之一 。它需要和硬件打交道,容易引起系统崩溃,而且很难调试。掌握设备驱动程序的开发技术,将使得开发嵌入式Linux的系统更为迅速和有效。

责任编辑:ct

欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/dianzi/2539347.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2022-08-05
下一篇 2022-08-05

发表评论

登录后才能评论

评论列表(0条)

保存