ADI实验室电路:16位、100kSPS逐次逼近型ADC系统

ADI实验室电路:16位、100kSPS逐次逼近型ADC系统,第1张

AD7988-1 16位、100 kSPS PulSAR ADC

AD8641低功耗、轨到轨输出精密单通道JFET运算放大器

ADR435超低噪声XFET 5.0 V基准电压源,具有吸电流和源电流能力

评估和设计支持

电路评估板

CN-0306电路评估板(EVAL-CN0306-SDPZ)

系统演示平台(EVAL-SDP-CB1Z)

设计和集成文件

原理图、布局文件、物料清单

电路功能与优势

图1中的电路采用16位、100 kSPS逐次逼近模数转换器(ADC)系统,集成驱动放大器,针对最高1 kHz输入信号和100 kSPS采样速率、功耗低至7.35 mW的系统而优化。

这种方法对于便携式电池供电、要求低功耗的多通道应用极为有用。它还为那些两次转换突发之间的大部分时间ADC都处于空闲状态的应用提供了优势。

通常,选择高性能逐次逼近型ADC的驱动放大器处理宽范围的输入频率。然而,当某个应用需要更低的采样速率时,便可节省大量功耗,因为降低采样速率会相应地降低ADC功耗。

若要完全利用通过降低ADC采样速率使功耗下降的优势,则需要使用低带宽、低功耗放大器。例如,推荐80 MHz的ADA4841-1运算放大器(10 V时功耗为12 mW)与AD7988-1 16位逐次逼近型寄存器(SAR) ADC(100 kSPS时功耗为0.7 mW)一同使用。包括ADR435基准电压源(7.5 V时功耗为4.65 mW)在内的总系统功耗在100 kSPS时为17.35 mW。

对于最高1 kHz的输入带宽和100 kSPS的采样速率,AD8641 3MHz运算放大器(10 V时功耗为2 mW)可提供出色的信噪比(SNR)和总谐波失真(THD)性能,并且在100 kSPS时可将总系统功耗从17.35 mW降低至7.35 mW,降幅达58%。

ADI实验室电路:16位、100kSPS逐次逼近型ADC系统,实验室电路之16位、100 kSPS逐次逼近型ADC系统(电子工程专辑),第2张

图1. 使用AD8641低功耗放大器驱动AD7988-1 ADC的系统电路图(原理示意图:未显示所有连接)

电路描述

该电路包含AD7988-1 ADC、AD8641放大器和ADR435基准电压源。AD7988-1是一款16位、100 kSPS SAR ADC,其低功耗可随采样速率调整,100 kSPS时功耗为0.7 mW。除了低功耗,它还具有业界领先的交流性能:SNR = 91 dB,THD = -114 dBc。

驱动放大器采用AD8641低功耗、精密器件,其电源电流为200 μA,增益带宽积为3 MHz。AD8641可采用5 V至26 V的电源供电。ADC的基准电压源采用ADR435,这是一款高精度、低噪声、5 V XFET基准电压源。低电源电流(620 μA)时,ADR435具有极低的温度系数(3 ppm/℃)。100 kSPS时,本电路的总功耗为7.35 mW。信噪比(SNR)为88.5 dBFS,总谐波失真(THD)为-103 dBc,输入频率最高为1 kHz。

AD8641配置为单位增益缓冲器,并且它与AD7988-1之间有一个截止频率为93 kHz的RC滤波器(634 Ω,2.7 nF)。滤波器允许使用诸如AD8641等噪声更高的放大器,在28 nV/√Hz下依然具有低得多的功耗。与ADC的规格相比,以更高的噪声换取更低功耗的代价仅是系统的信噪比(SNR)性能下降了2.5 dB。相对于数据手册中推荐的数值(20 Ω),更高的R值(634 Ω)表示AD8641可以驱动2.7 nF的大容量输入电容。更高的R值可将最大输入带宽限制为1 kHz,使得失真较低。

对于最高1 kHz的输入,这与AD8641的16位失真性能(THD低于-100 dBc)差不多。超过1 kHz会加剧失真,因此不建议在更高的输入频率下使用该电路,而由于较长的建立时间,亦不建议在多路复用器应用中使用该放大器。注意,相对于正电源电压而言,AD8641需要至少2 V的输入裕量。输出级以轨到轨方式工作。

欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/dianzi/2539457.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2022-08-05
下一篇 2022-08-05

发表评论

登录后才能评论

评论列表(0条)

保存