地海杂波是地表平面,海平面反射的雷达回波,由于受到风力,环境湿度等多种自然因素的影响,地海杂波信号变化复杂,信号强。它的存在严重干扰了雷达对地面,海面目标的检测性能。为了提高雷达的检测性能,要采用地海杂波测试控制平台来实现对地海杂波的检测。这样可以有效检测地海杂波信号,从而掌握各种条件下地海杂波的分部,以便消除或者减小杂波的影响。该测试平台由天线,天线座以及伺服控制系统3部分组成。
1 椭圆波束偏置抛物面天线设计
1.1 天线参数设计
在该系统中的天线部分使用偏置抛物面天线。偏置抛物面天线是指利用常规抛物面天线在其焦轴上(或下)半空间的一部分为天线主反射面的天线,如图1所示。图1中:V是抛物面的顶点,F是抛物面的焦点,V到F是抛物面的焦距,用f表示,h是静距,θh是静距角,θo=θh+θα是偏置角,θα是馈源对偏置抛物面的半照射角,XOZ平面是偏置抛物面的对称平面,YOZ平面是其非对称平面。
根据实际地海杂波信号情况,天线使用频率带宽为14.93%,馈源对偏置抛物面的照射角为79.6°。可以采用的馈源有波纹喇叭和多模喇叭,由于L波段频率低,波长224mm,若采用波纹喇叭则尺寸和重量过大,因此采用多模喇叭。多模喇叭的双极化馈电长度为200 mm,多模传输段长1 1993 mm,总长1 400 mm。天线方位半功率角为6.3°;俯仰半功率角为7.8°;增益G=27.4 dB。
1.2 天线干扰因素
天线在工作过程中,存在有干扰。收、发天线并排紧靠一起,辐射耦合不仅存在于两天线之间,在设备的机壳,机壳的孔洞,传输线及元件之间都可能存在,综合起来主要有3种不同的干扰途径:1)收、发天线之间的辐射干扰;2)元件或机壳间的辐射干扰;3)传输线之间的辐射干扰。除此之外,周边反射体的干扰也会影响天线的性能。但是天线之间的辐射干扰是主要干扰途径。 天线之间的近场耦合计算是一个比较复杂的电磁场问题,因此本文只做定性的分析。假设两天线彼此位于远场区,即天线间距
,两个天线的最大口径为2.5 m,中心频率波长为0.224 m;通过计算得到天线间距为58 m,在实际工程中,两个天线之间的距离是不可能达到58 m的,由于天线的旋转半径为3 m,两天线中心距离6 m,即两天线处于近场区,天线的馈源对另一天线的干扰将起到明显作用,隔离这项干扰最有效的办法是在天线周边加上导电围边,当围边的高度为波长的5.3倍时,天线远旁瓣可降低13 dB,两天线的隔离可达到80 dB左右,围边的实际高度为1.2 m。
2 天线座设计
2.1 天线座结构设计
天线座设计采用方位,俯仰型转台式结构。由方位座、俯仰箱驱动系统、轴角装置、限位保护装置、调平装置、配重等部分组成,如图3所示。方位部分由底座、转盘、转盘轴承等组成,转盘式具有较好的刚性和稳定性,转盘轴承直接带有蜗轮,保证了方位驱动刚性。底座、转盘均为钢板焊接件,为保证-13.5°仰角工作,方位上增加一个支座以提高俯仰轴高度。俯仰由俯仰箱左右轴承、俯仰轴和左右支臂组成,俯仰箱为铸件,左右支臂与俯仰轴同步转动,其上端与天线联接,后端放置配重,用于平衡天线重量,在左右支臂上端增加过渡件,即可与其他天线联接。对于驱动系统目前在工程中广泛采用丝杆驱动方式,但本系统的天线座设计并未考虑采用,主要原因有2个:1)由于工作环境比较恶劣,对于天线的速度均匀性要求比较高,而丝杆驱动在工作范围内速度是不均匀的,测试平台要求天线转动速度约为6(°)/s,该速度用丝杆方式实现比较困难;2)丝杆转动效率低,在要求较大风速条件下工作,电机功率比较大。针对实际情况,该驱动系统选择采用蜗轮付加行星减速器方式,为了减少体积和重量蜗轮采用包络面型式,这种型式具有较大的负载能力,行星减速器具有体积少、重量轻、效率高等优点。采用涡轮驱动的方式,电机功率约550 W。
轴角传感器采用旋变、俯仰旋变1:1与俯仰轴联接,方位通过齿轮联接,为消除齿隙传动齿轮采用双片消隙。天线座中安装有限位开关和机械限位块,以保证设备安全,限位开关采用无接触接近开关,以适应恶劣海边环境,系统采用蜗轮驱动具有自锁性,所以朝天锁定可利用其本身自锁性能。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)