许多教材和参考指南将运算放大器(运放)定义为可以执行各种功能或 *** 作(如放大、加法和减法)的专用集成电路(IC)。虽然我同意这个定义,但仍需注重芯片的输入引脚的电压。
当输入电压相等时,运算放大器通常在线性范围内工作,而运算放大器正是在线性范围内准确地执行上述功能。然而,运算放大器只能改变一个条件来使输入电压相等,即输出电压。因此,运算放大器的输出通常以某种方式连接到输入,这种通常被称为电压反馈。
在本文中,我将解释一个通用电压反馈运算放大器的基本 *** 作,并请您参阅其他内容以了解更多信息。
图 1 描述了运算放大器的标准示意图符号。有两个输入端(IN+, IN-)、一个输出端(OUT)和两个电源端(V+, V-)。这些端的名称可能因制造商而异,甚至单个制造商也可能使用不同的名称,但它们仍然是相同的五个端。
例如,您可能会看到 Vcc 或 Vdd 而不是 V+。又或者,您可能会看到 Vee 或 Vss 而不是 V-。电源端子的其他标签会有所不同,因为它们指的是器件内部的晶体管类型。例如,当在运算放大器内部使用双极结型晶体管(BJT)时,电源对应于 BJT 的集电极和发射极:Vcc 和 Vee。在运算放大器内部使用场效应晶体管(FET)时,电源标签与 FET 的漏极和源极相对应:Vdd 和 Vss。如今,许多运算放大器同时包含 BJT 和 FET,因此 V+和 V- 是常见的标签,与器件内部的晶体管无关。简言之,不要太在意引脚标签,只要理解它们的作用即可。
等式 1 表示运算放大器的传递函数:
在等式 1 中,AOL 被称为“开环增益”。在现代运算放大器中,它通常是一个非常大的值(120 dB 或 1,000,000 V/V)。例如,如果 IN+和 IN- 之间的电压差仅为 1mV,运算放大器将尝试输出 1000V!在这种配置中,运算放大器不在线性区域内工作,因为输出不能使输入彼此相等(记住,理想情况下 In+等于 In-)。因此,运算放大器需要一种方法来控制开环增益,即通过负反馈来实现。
图 2 描述了作为反馈控制系统一部分的运算放大器。您会注意到输出 OUT 通过一个标记为ß的块反馈到负输入 IN-。ß被称为反馈因子,通常使用电阻来降低输出电压。
图 3 比较了开环运算放大器和负反馈运算放大器。这些 TINA-TI™软件仿真电路采用的运放是近乎理想的运放,加了电源来限制输出电压。注意,对于左侧的开环配置,输出几乎等于正电源(V+)。这是因为输入引脚之间有一个很小的差异(100mV)。这种小电压被开环增益放大,开环增益会强制输出到其中一个电源电压。在图 3 右侧的负反馈或闭环电路中,运算放大器输出上的分压器需要 200 mV 的输出电压,以便使反相和同相输入相等。
输入电压的放大称为增益。它是反馈回路中电阻值的函数。等式 2 描述了图 3 中右边电路的增益方程,这就是所谓的同相放大器。您将看到计算出的输出电压与仿真相符。如果您想要了解有关此电路(以及其他常见的运算放大器电路,如缓冲器、同相放大器和差分放大器)的更多信息,您可以下载电子书“模拟工程师电路指南:放大器”。”
运算放大器的输出受到电源电压的限制。图 4 是图 3 中同相放大器的输出电压与输入电压的关系图。注意当输出接近正负电源时,输出由于饱和受限。
由于这个限制,在图 5 中可以看到,随着输出接近电源,输入引脚之间的电压差 Vdiff 增加。只有当输入几乎相等时,运算放大器才在线性区域工作。
为了更深入地了解运算放大器,请查看我们的模拟课程 TI 高精度实验室。本课程将深入探讨运算放大器,并讨论输入失调电压(Vos)、输入偏置电流(IB)和输入 / 输出限制等基本非理想因素。还有一些高级主题讲座,如运算放大器带宽(BW)、压摆率(SR)、噪声、共模抑制比(CMRR)、电源抑制比(PSRR)和稳定性。除了讲座之外,有些主题还包括动手实验。为了进行这些实验,您需要相应的运算放大器评估模块。
如果您喜欢 DIY 一些电路,那么可能会对通用 DIY 放大器电路评估模块(用于单通道运放)、双通道通用 DIY 放大器电路评估(用于双通道运放)或 DIP 封装转换评估模块(可与标准的打样板或电路试验板一起使用)感兴趣。DIY-EVMs 支持不同封装的运放,并具有许多标准运算放大器电路,如本文所述的同相放大器、反相放大器、缓冲器和滤波器(包括 Sallen-Key 和多反馈)。由于双列直插式封装(DIP)转换 EVM 可以将许多标准的表面贴装封装转换为 DIP,以便与电路试验板一起使用,因此您可以评估任何配置的放大器。
这就是运算放大器的基本原理:只有当输入引脚的电压相等时,运算放大器才是线性的。然而,为了实现这一点,运算放大器只能调整其输出电压。输出摆幅限制会导致输入电压差增大,从而导致非线性。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)