微波光子学技术的发展及其在雷达上的应用是雷达领域的一项潜在颠覆性技术,是新一代多功能、软件化雷达的重要技术支撑。微波光子雷达作为雷达发展的新形态,能有效克服传统电子器件的技术瓶颈,改善和提高传统雷达多项技术性能,为雷达等电子装备技术与形态带来变革。
微波光子技术在电子信息系统中的应用演进
微波光子技术在电子系统中的最初应用形式为光模拟信号传输,即将单个或多个模拟微波信号加载到光载波上并通过光纤进行远距离传输。近年来,微波光子逐渐从模拟光传输功能演变为包括微波光子滤波、变频、光子波束形成等多种信号处理功能的综合能力。
微波光子学最早的系统层应用是70年代末美国莫哈韦沙漠中的“深空网络”,它由分布在数十公里内的十多个大型碟形天线组成,这些天线借助光纤传递1.42 GHz超稳定参考信号,并利用相控阵原理像一个巨大的天线一样工作,从而与太空的空间飞船保持通信和跟踪。近年来,微波光子技术已应用到雷达、电子战、卫星通信、综合射频和深空探测等领域。
典型的微波光子雷达系统包括:休斯公司的光纤波束形成网络宽带共形阵列、泰勒斯公司的光控相控阵样机、全光子数字雷达(PHODIR)样机、双波段微波光子雷达样机、以及俄罗斯射频光子阵列(ROFAR)开发项目。
典型的微波光子机载电子战系统包括:ALR-2001嵌入微波光子链路验证系统、欧空局的电子战光控分系统(EWOCS)和F/A-18E/F大黄蜂上的ALE-55光纤拖曳式诱饵。
典型卫星通信和成像系统包括:EUROSTAR3000通信卫星、土壤湿度和海洋盐度(SMOS)地球探测卫星、PROBA-V成像卫星的高密度空间连接器验证(HERMOD)载荷、ALPHASAT通信卫星的光互联系统模块(SIOS)。
为实现雷达、电子战和通信等多频段宽带信号的综合管理和分配,一种可行途径是采用基于射频光子纵横交换技术和光纤射频传输技术的多功能综合射频方案。美国海军就这两种技术在AMRFC项目中进行了研究,并分别用于舰载可重构孔径阵列的波形产生和射频分配网络中。
在深空探测方面,智利的阿塔卡马大型毫米波阵列(ALMA)预计安装66面口径12米的抛物面天线,进行毫米波和亚毫米波(31~950GHz)太空观测,利用18km长的光钎基线,为每个天线提供本振参考信号。
微波光子雷达研究进展
一、世界首部全光子数字雷达(PHODIR)
意大利PHODIR项目于2009年底启动,旨在设计、研制和验证具备发射信号光产生、接收信号光处理能力的全数字雷达验证机,解决阻碍全数字雷达收发机的瓶颈问题,例如无杂散动态范围(SFDR)和相位噪声电平。该项目于2013年取得重大进展,所研制的单站单通道PHODIR样机成功实现对非合作民航客机的跟踪与测量。
二、双波段微波光子雷达
2015年6月,研究小组将PHODIR雷达扩展至两个频段,系统核心是一个双波段射频发射机和一个双波段射频接收机。在意大利SanBenedetto del Tronto港口对双波段雷达进行了外场验证。下图B和C分别是SEAEAGLE雷达和双波段微波光子雷达X频段分系统的PPI图像,两图像符合极好,证明该双波段雷达样机已达到了商用先进雷达的性能。
(图为:目标船(A)以及采用S波段(B)、X波段(C)探测得到的一维距离像,(D)融合后的结果)
微波光子雷达的内在相参性能够省去数据融合时复杂的相位校准算法。下图A是目标A的图像,图B和C分别为S、X波段探测到的一维距离像,图D是利用上述融合算法合成的一维距离像,此时图中显示出了更多的细节。根据船体实际结构,可以看到船尾部有更多的散射源(绞盘),上层形状显示桅杆和背部隔板分离。
2016年5月,实验小组实现了对空中和海上非合作目标的ISAR成像。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)