硬件电路测量中的陷阱分析

硬件电路测量中的陷阱分析,第1张

  在平时测试硬件电路的时候,经常会遇到一些容易忽视又不容易觉察的问题,但是我们又必须正视这些问题的存在,并想方设法减弱或者消除这些问题,这里称之为硬件电路测量中的陷阱。

  测试仪器和仪表的负载效应和滤波器效应

  在用万用表测量电压或者电流的时候,万用表都是作为一个负载和测量对象并联或者串联在一起。如果测量对象的负载大小和万用表的等效负载的大小相比,如果属于相同数量级大小,那么万用表负载就一定会对测量对象产生影响。比如测量电压,被测负载的大小如果是10K,那么如果所采用万用表的等效负载也是这个这个数量级的,那么测试的结果一定会有很大的误差。根据并联电路中的分流理论,如果要减小这种误差,就必须选择等效负载大的万用表,并且是越大越好。一般而言,指针万用表在测量电压的时候,其等效负载根据量程的不同分布在几十千欧到几百千欧数量级,数字万用表在测量电压的时候,因其采用了有源电路做为等效负载,所以其值一般根据量程不同分布在兆欧数量级到十几兆欧数量级,相对而言,其对被测对象的影响就小很多,测试的结果可信度也比较高。但是,如果将数字万用表看做一个电压传感器的话,其高阻值的等效负载,又会容易拾取一些噪声电压,所以也会引进一些测试上的误差,如果要减小这个高阻的探头效应,就必须在测量的时候,表笔和表体尽可能远离一些潜在的噪声干扰源。矛盾论的又一次体现在这里。

  再用联系的观点来看,测量仪器作为等效负载实际上也参与了所测量的电路的工作,如果要考虑其影响的话,一旦测量仪器介入了测试电路,整个电路的工作状态就发生了变化,如果测量仪器对电路的影响比较小,那么这个测量仪器的影响就是一个微扰,可以忽略,如果测量仪器对电路的影响比较大,那么这个测量仪器的影响就是对这个电路系统的一个冲击。这就是为什么,有时候我们做测试的时候,表笔一旦放在测试对象上,却看到了测试对象自激了,或者不工作了,或者有莫名其妙的噪声出现的原因,这个时候,我们需要做的就是更换负载效应小的仪器或者表笔探头。

  在用万用表测量交流信号的时候,还需要注意测量对象的工作频率,万用表作为负载参与测量的时候,如果单纯从测量表笔向万用表看进去,可以认为万用表是一个滤波器,因为其测量电路无非是由一些电阻电容晶体管组成的测量电路,那么这个电路必然存在一个工作频率范围(带宽),如果在这个频率范围内测量,那么测试结果有效,如果在这个频率范围之外测量,测试结果就不准确了。所以必须关注测试仪器的频率范围。这个就是万用表的滤波器效应。

  同样,在使用示波器,交流毫伏表,超高频微伏表和频谱仪时,也必须注意相应的负载效应和滤波器效应,应该根据所测试对象的负载和工作频率去选择相应的仪器。在仪器的说明书上,一般都有等效负载的大小说明,以及工作频率的说明,这个比较常见,非常容易理解。

  一般而言,测量低频交流信号时,如果单纯想测量信号的大小,可以选择数字万用表,如果还想看到信号的时域波形,那么选择示波器。如果信号很微弱,可以选择毫伏表和示波器搭配使用。测量音频信号时,根据信号的大小,可以选择示波器或者毫伏表,mV数量级的交流信号,可以用示波器和毫伏表搭配使用。高频信号时,可选择超高频毫伏表或者频谱仪。在使用这些仪器的时候,必须注意负载效应和滤波器效应。尤其是在测量高频小信号(uV数量级)电路的时候,如果高频放大器的负载为并联谐振电路,这个时候如果用频谱仪(50ohm负载效应)进行测量,必然导致50ohm的频谱仪和并联谐振电路一起作为高频放大器的负载,这样必然导致放大器的增益降低,所测试的结果必然是不准确的,这个时候可以采用差分高阻探头配合频谱仪进行测量,可以很大程度上减小负载效应的影响。

  另外,在测试晶体的时候,一般常见的是用示波器进行时序的测量,还有的是测试晶体是否振荡。这个时候,一定要注意示波器探头的负载效应,因为探头上会存在寄生电容,比较小,一般是pF量级,但是晶体的负载电容一般也是pF量级,所以探头的介入,会引起晶体振荡电路的频率的偏移,从而影响晶体振荡电路的工作,严重的,会导致晶体电路无法起振。这个时候,就必须选择差分高阻探头进行测量。

欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/dianzi/2568587.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2022-08-07
下一篇 2022-08-07

发表评论

登录后才能评论

评论列表(0条)

保存