智能自动化及其在仪器仪表中的应用

智能自动化及其在仪器仪表中的应用,第1张

  一 智能科技全面振兴

  当今的智能科技分支林立,蓬勃兴旺,在国内外已获得了飞速发展,诸如模糊逻辑、遗传算法神经网络、专家系统、仿人智能、粗糙集理论、物元可拓方法、知识工程、模式识别、定性控制、小波分析、分形几何、混沌控制、数据融合技术等等,真可谓是八仙过海,各显神通。其各有所长,分别组合,取长补短,相得益彰。

  人工神经网络是当今智能科技中的基础技术,它的连接机制与人工智能的符号推理机制并列,成为智能科技的两大阵营。它模拟人脑的解剖生理学特征,用许多并行的简单神经元,以一定的拓扑结构连结成网,既接受外界信息,又相互刺激,更擅长于分布存储,联想记忆,反馈求精,黑箱映射,权值平衡,动态逼近,全息存录,容错防失,加之以神经元巨量互连,形成强大的自学习、自适应、自组织、自诊断、自修复能力,其网络节点间权值强度不断反馈,动态分析,与语言、视听人机接口的密切配合,可自动获取人类专家丰富的知识与经验,并模拟人脑的逻辑推理、形象思维以至灵感突现,恰如其分地处理各种不准确、不完善、不确定的信息,推理得出正确结论。

  模糊逻辑模仿人脑的不确定性概念判断、推理思维方式,对于模型未知或不能确定的描述系统,以及强非线性、大滞后的控制对象,应用模糊集合和模糊规则进行推理,表达过渡性界限或定性知识经验,模拟人脑方式,实行模糊综合判断,推理解决常规方法难于对付的规则型模糊信息问题。模糊逻辑善于表达界限不清晰的定性知识与经验,它借助于隶属度函数概念,区分模糊集合,处理模糊关系,模拟人脑实施规则型推理,解决因“排中律”的逻辑破缺产生的种种不确定问题。

  遗传算法是一种以“电子束搜索”特点抑制搜索空间的计算量爆炸的搜索方法,它能以解空间的多点充分搜索,运用基因算法,反复交叉,以突变方式的 *** 作,模拟事物内部多样性和对环境变化的高度适应性,其特点是 *** 作性强,并能同时避免陷入局部极小点,使问题快速地全局收敛,是一类能将多个信息全局利用的自律分散系统。运用遗传算法(GA)等进化方法制成的可进化硬件(EHW),可产生超出现有模型的技术综合及设计者能力的新颖电路,特别是GA独特的全局优化性能,使其自学习、自适应、自组织、自进化能力获得更充分的发挥,为在无人空间场所进行自动综合、扩展大规模并行处理(MPP)以及实时、灵活地配置、调用基于EPGA的函数级EHW,解决多维空间中不确定性的复杂问题开通了航向。

  专家系统是收集应用人类专家的知识和经验,模仿专家处理知识和解决问题的方法,编制成计算机智能软件系统,在通过人机结合不断获得反馈信息的情况下,实时在线地对规则、事例和模型实行独立决策的一种问题求解或控制系统。这种计算机智能系统具有启发性、透明性和灵活性,在不受时间、空间和环境影响情况下,高效率、准确无误、周密全面、迅速不疲倦地完成工作,其解决问题能力和知识的广博性可超过人类专家,又克服了人类专家因疏忽、遗忘、紧张、疲倦等干扰因素造成的偏差和错误,因而其推广、应用具有巨大的经济和社会效益。

  模式识别是模拟人脑形象思维,根据事物的特征、形象或关系,辨识、判定和处理事物的一种智能决策方法和技术,它广泛应用于科研生产中,是一种具有重大价值的技术方法。

  粗糙集理论则是在离散归一化处理其在测量中所得的数据集合,通过基于集合元素的不可分辨关系的代数运算,利用条件与结果属性中的大量有用特征、有效数据发现知识,在决策规则的初步简化计算中取得核值,然后进一步简化规则并根据问题要求选取最小决策算法给予实际应用,去除大量信息中的多余属性,降低信息空间的维数和属性数量。它可大大简化网络结构和样本数量,缩短训练时间,是智能科技中一种具有根本意义的分析方法。这种方法是基于测量数据集而获取知识的,故对虚拟仪器的智能化发展具有重大意义。

  混沌运动是确定性系统中局限于有限相空间的高度不稳定运动,是无序中的有序,它使事物在长时间的行为中显示出表面上的某种混乱。混沌现象的特征是“非周期背后隐藏的有序性”以及“对初始条件的敏感依赖性”,充分利用混沌特征,在智能信息处理中实施非线性决策和预测、非线性系统辨识、模式识别、图像数据压缩、高性能保密、多目标搜索,以及无限丰富、精彩绝伦的计算机绘画等种种神奇应用。

  分形理论研究非线性系统产生的不光滑和不可微的几何形体及其内在结构的比例自相似性,为研究掌握自然界一切复杂事物的运动变化规律提供了强有力的工具和方法。

  小波分析是现代分析数学这棵大树的主干和最完美的结晶。从形象直观上看,小波是指人们可以观察到的最短、最简单的正负相同、具有衰减性的振荡波;而从数学上说,小波函数f(t)是具有其中心三个条件的窗口函数,它既能刻划信号在时域和频域的局部化特性,又能完全保留信号的全部信息,而且具有变焦距性质,即对于只在瞬间出现的高频信号具有很窄的时间窗口,而在低频段又具有很宽的不同尺度的变换。小波分析的实质是反映事物世界的波粒二重性以及局部与整体多层次展现的辩证关系,其最吸引人的特点就在于时频定位和多尺度近似能力,在自适应控制、鲁棒控制、非线性控制、过程辨识、神经网络等众多领域都取得了丰硕的成果。

  分形与混沌是本质上一致的两个方面。混沌事件在不同的时间表现出相似的变化模式,而分形则是在空间标度下表现的相似性。混沌所关注的是其复杂的不稳、发散、收敛的过程,而分形则是刻画混沌运动的直观的几何语言。混沌、分形和小波分析的有机结合有着极丰富的内涵和深刻的哲理,它必将为材料分子自动组装、高速基因测序及高效蛋白质结构预测等重大的精微科技难题的解决提供强有力的工具,也将为仪器仪表的虚拟化、网络化和智能化开拓出光辉前景。

  物元可拓方法是在多种已知的一般决策的比较和优选的基础上,根据各层次、各阶段产生的不相容的矛盾问题的需要,进而突破常规地、拓展性地采取创造性决策技巧,抓住关键策略,最大限度地满足主系统、不相容的矛盾转化为相容关系,从而实现全局性最佳决策目标。它是在复杂系统中化解次要矛盾,解决主要矛盾和关键性难题的有力手段,也将会对仪器仪表的虚拟化、网络化和智能化的发展进程作出重大贡献。

  数据融合技术是对多信息源测得的数据,根据其在整个系统的重要性和可信度分配以不同的权值比重,综合计算出该特征属性总体最优化表征值的一种技术方法。它是一种对复杂事物属性的优化测量和表征技术,对高技术开发研究具有极重要的意义。

  总之,当今世界的智能科技正在飞速、全面地向前发展。

  二 智能科技在仪器仪表及测量中的应用

  智能自动化技术的应用正在全面渗入到仪器仪表工业。

  (1)在仪器仪表结构、性能改进中的应用

  首先,智能自动化技术为仪器仪表与测量的相关领域的应用开辟了广阔的前景。运用智能化软硬件,使每台仪器或仪表能随时准确地分析、处理当前的和以前的数据信息,恰当地从低、中、高不同层次上对测量过程进行抽象,以提高现有测量系统的性能和效率,扩展传统测量系统的功能,如运用神经网络、遗传算法、进化计算、混沌控制等智能技术,使仪器仪表实现高速、高效、多功能、高机动灵活等性能。

  其次,也可在分散系统的不同仪器仪表中采用微处理器、微控制器等微型芯片技术,设计模糊控制程序,设置各种测量数据的临界值,运用模糊规则的模糊推理技术,对事物的各种模糊关系进行各种类型的模糊决策。其优势在于不必建立被控对象的数学模型,也不需大量的测试数据,只需根据经验,总结合适的控制规则,应用芯片的离线计算、现场调试,按我们的需要和精确度产生准确的分析和准时的控制动作。

  特别是在传感器测量中,智能自动化技术的应用更为广泛。用软件实现信号滤波,如快速傅立叶变换、短时傅立叶变换、小波变换等技术,是简化硬件,提高信噪比,改善传感器动态特性的有效途径,但需要确定传感器的动态数学模型,而且高阶滤波器的实时性较差。运用神经网络技术,可实现高性能的自相关滤波和自适应滤波。充分利用人工神经网络技术强有力的自学习、自适应、自组织能力,联想、记忆功能以及对非线性复杂关系的输入、输出间的黑箱映射特性,无论在适用性和快速实时性等各方面都将大大超过复杂函数式,可充分利用多传感器资源,综合获取更准确、更可信的结论。其中实时与非实时的、快变与缓变的、模糊和确定性的数据信息,可能相互支持,也可能相互矛盾,此时,对象特征的提取、融合,直至最终决策,作出正确的判断,将成为难点。于是神经网络或模糊逻辑将成为最值得选用的方法。例如,气体传感阵列用于混合气体识别,在信号处理方法上可采用自组织映射网络和BP网络相结合,先进行分类,再识别组分,将传统方法的全程拟合转化为分段拟合,以降低算法的复杂度,提高识别率。又如,食品味觉信号的检测和识别的难度,曾一度是研究与开发单位的主要障碍所在。如今可利用小波变换进行数据压缩和特征提取,然后将数据输入用遗传算法训练过的模糊神经网络,则大大提高了对简单复合味的识别率。再如,在布匹面料质量的评定,柔性 *** 作手对触觉信号的处理,机器的故障诊断领域,智能自动化技术也都取得了大量的成功实例。

欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/dianzi/2568748.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2022-08-07
下一篇 2022-08-07

发表评论

登录后才能评论

评论列表(0条)

保存