图文并茂讲解三极管原理

图文并茂讲解三极管原理,第1张

三极管是一种控制电流的半导体器件,其作用是把微弱信号放大成幅度值较大的电信号, 也用作无触点开关。关于三极管原理的解读有多种版本,这篇文章将通过图文并茂的方式让你更容易了解三极管。

一、很多初学者都会认为三极管是两个 PN 结的简单凑合(如图1)。这种想法是错误的,两个二极管的组合不能形成一个三极管。我们以 NPN 型三极管为例(见图 2 ),两个 PN 结共用了一个 P 区 —— 基区,基区做得极薄,只有几微米到几十微米,正是靠着它把两个 PN 结有机地结合成一个不可分割的整体,它们之间存在着相互联系和相互影响,使三极管完全不同于两个单独的 PN 结的特性。三极管在外加电压的作用下,形成基极电流、集电极电流和发射极电流,成为电流放大器件。

图文并茂讲解三极管原理,三极管的工作原理,第2张

图文并茂讲解三极管原理,三极管的工作原理,第3张

二、三极管的电流放大作用与其物理结构有关,三极管内部进行的物理过程是十分复杂的,初学者暂时不必去深入探讨。从应用的角度来讲,可以把三极管看作是一个电流分配器。一个三极管制成后,它的三个电流之间的比例关系就大体上确定了(见图 3 ),用式子来表示就是

图文并茂讲解三极管原理,三极管的工作原理,第4张

β 和 α 称为三极管的电流分配系数,其中 β 值大家比较熟悉,都管它叫电流放大系数。三个电流中,有一个电流发生变化,另外两个电流也会随着按比例地变化。例如,基极电流的变化量 ΔI b = 10 μA , β = 50 ,根据 ΔI c = βΔI b 的关系式,集电极电流的变化量 ΔI c = 50×10 = 500μA ,实现了电流放大。

三、三极管自身并不能把小电流变成大电流,它仅仅起着一种控制作用,控制着电路里的电源,按确定的比例向三极管提供 I b 、 I c 和 I e 这三个电流。为了容易理解,我们还是用水流比喻电流(见图 4 )。这是粗、细两根水管,粗的管子内装有闸门,这个闸门是由细的管子中的水量控制着它的开启程度。如果细管子中没有水流,粗管子中的闸门就会关闭。注入细管子中的水量越大,闸门就开得越大,相应地流过粗管子的水就越多,这就体现出“以小控制大,以弱控制强”的道理。由图可见,细管子的水与粗管子的水在下端汇合在一根管子中。三极管的基极 b 、集电极 c 和发射极 e 就对应着图 4 中的细管、粗管和粗细交汇的管子。电路见图 5 ,若给三极管外加一定的电压,就会产生电流 I b 、 I c 和 I e 。调节电位器 RP 改变基极电流 I b , I c 也随之变化。由于 I c = βI b ,所以很小的 I b 控制着比它大 β 倍的 I c 。 I c 不是由三极管产生的,是由电源 V CC 在 I b 的控制下提供的,所以说三极管起着能量转换作用。

图文并茂讲解三极管原理,三极管的工作原理,第5张

四、如图5,假设三极管的β=100,RP=200K,此时的Ib=6v/(200k+100k)=0.02mA,Ic=βI b=2mA

当RP=0时,Ib=6v/100k=0.06mA,Ic=βI b=2mA。以上两种状态都符合Ic=βI b,我们说,三极管处于“放大区”。假设RP=0,Rb=1k,此时,Ib=6v/1k=6mA按Ic=βI b计算,Ic应等于600mA,而实际上,由于图中300欧姆限流电阻(Rc)的存在,实际上Ic=(6v/300)≈20mA,此时,Ic≠βI b,而且,Ic不再受Ib控制,即处于“饱和区”,当RP和Rb大到一定程度,使Ube《死区电压(硅管约0.5V,锗管约0.3)此时be结处于不导通状态,Ib=0,则Ic=0,处于“截止区”。

图文并茂讲解三极管原理,三极管的工作原理,第6张

五、单纯从“放大”的角度来看,我们希望 β 值越大越好。可是,三极管接成共发射极放大电路(图 6 )时,从管子的集电极 c 到发射极 e 总会产生一有害的漏电流,称为穿透电流 I ceo ,它的大小与 β 值近似成正比, β 值越大, I ceo 就越大。 I ceo 这种寄生电流不受 I b 控制,却成为集电极电流 I c 的一部分, I c = βI b + I ceo 。值得注意的是, I ceo 跟温度有密切的关系,温度升高, I ceo 急剧变大,破坏了放大电路工作的稳定性。所以,选择三极管时,并不是 β 越大越好,一般取硅管 β 为 40 ~ 150 ,锗管取 40 ~ 80 。

图文并茂讲解三极管原理,三极管的工作原理,第7张

欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/dianzi/2578113.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2022-08-07
下一篇 2022-08-07

发表评论

登录后才能评论

评论列表(0条)

保存