1 DSP和FPGA的电源要求
系统各个电源转换芯片统一由蓄电池供电。电源模块在用蓄电池加电时,其电压上升过程中与达到稳定状态前可能出现较严重的波动。而DSP和FPGA在上电过程中如果电压波动较大,加载可能失败并导致后续加载 *** 作异常[4]。为了保证加载成功,不会产生不受控制的状态,所以在系统中加入了电压监控和复位电路,以确保DSP和FPGA芯片在系统加电过程中始终处于复位状态,直到电压达到所要求的电平。同时,一旦电源的电压降到阈值以下,强制芯片进入复位状态,确保系统稳定地工作。因为系统用6V蓄电池供电,所以电压不会超过6V,只需进行欠压监控[5]。
2 电源系统设计
系统中存在模拟电路和数字电路供电。本文重点介绍数字电路电源部分。
本设计采用TPS5431×系列电压转换芯片设计数字电源系统,分别产生DSP和PFGA的内核和外围电压以及+5V电压。TPS5431×系列是低电压输入、大电流输出的同步PWM Buck降压式电压转换器,其电路外围器件少,60mΩ的MOSFET开关管保证了在持续3A的输出电流时超过92%高效率;输出电压有0.9V、1.2V、1.5V、1.8V、2.5V、3.3V可选,初始误差为1%;PWM频率范围从280~700kHz;通过峰值电流限制和热关断实现过载保护;加强散热型的PWP封装为芯片提供了更好的散热;综合解决了电路板面积和成本[3]。
2.1内核电压的产生
本部分主要是为TMS320C6713B和EPIC12设计内核供电系统,其内核电压分别为1.2V和1.5V,分别用TPS54312和TPS54313来产生,具体电路如图1、图2所示。为了满足供电顺序的要求,图1、图2中的PWRGD接到图3中的SS/ENA脚。
参数的选取:芯片的开关频率设为700kHz,为此,需要保持FSEL脚开路并在RT脚和AGND脚之间串联71.5kΩ的电阻;输出滤波电感的取值范围在4.7~10μH之间,本文选用4.7μH的贴片电感;SS/ENA脚通过一个低容值电容接地,其功能为使能、输出延迟和电压上升延迟。其中延迟时间和电容值成正比,近似为:
式中: td为输出延迟时间(秒);C(SS)为SS/ENA脚所接电容(F);t(SS)为输出电压上升延迟时间(秒)。
本设计内核电压电路中,C(SS)=0.039μF,根据式(1)、式(2)可得td、t(SS)分别为9.36ms和5.46ms。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)