电压跟随器,顾名思义,就是输出电压与输入电压是相同的,就是说,电压跟随器的电压放大倍数恒小于且接近1。电压跟随器的显著特点就是,输入阻抗高,而输出阻抗低,一般来说,输入阻抗要达到几兆欧姆是很容易做到的。输出阻抗低,通常可以到几欧姆,甚至更低。
输入输出端出现相位差的主要原因其原因大致可分为两种:
1,由于运算放大器固有的特性
2,由于运算放大器以外的反馈环路的特性
运算放大器的特性Fig2a 及Fig2b分别代表性地反映了运算放大器的电压增益—频率特性和相位—频率特性。数据手册中也有这两张曲线图。
如图所示,运算放大器的电压增益和相位随频率变化。运算放大器的增益与反馈后的增益(使用电压跟随器时为0dB)之差,即为反馈环路绕行一周的增益(反馈增益)。如果反馈增益不足1倍(0dB),那么,即使相位变化180o,回到正反馈状态,负增益也将在电路中逐渐衰减,理论上不会引起震荡。
反而言之,当相位变化180o后,如频率对应的环路增益为1倍,则将维持原有振幅;如频率对应的环路增益为大于1倍时,振幅将逐渐发散。在多数情况下,在振幅发散过程中,受最大输出电压等非线性要素的影响,振幅受到限制,将维持震荡状态。
为此,当环路增益为0dB时的频率所对应的相位与180o之间的差是判断负反馈环路稳定性的重要因素,该参数称为相位裕度。(Fig2b.)
如没有特别说明,单个放大器作为电压跟随器时,要保持足够相位裕度的。
注:数据手册注明「建议使用6dB以上的增益」的放大器,不可用作电压跟随器。
运算放大器周边电路对反馈环路的影响在实际应用中,构成电压跟随器并非象Fig1.那样简单地将输入端和输出端直接连接在一起。至少输出端是与某个负载连接在一起的。因此,必须考虑到该负载对放大器的影响。
例如,如Fig3.所示,输出端和接地之间接电容时,这一容量与运算放大器的输出电阻构成的常数造成相位滞后。
(Fig2b.所示之状态可能变化为Fig2c所示之状态)这时,环路增益在输出电阻和C的作用下降低。同时,相位和增益之间不再有比例关系,相位滞后成为决定性因素,使反馈环路失去稳定,最糟糕时可能导致震荡。单纯地在输出端和接地之间连接电容,构成电压跟随器时,每种运算放大器之间的稳定性存在差异。
Fig4.为输入端需要保护电阻的运算放大器可能发生的问题。
为解决Fig3.出现的问题,可采用Fig5.(a)、(b)所示之方法。(a)图中插入R,消除因CL而产生的反馈环路相位滞后。(在高频区,R作为运算放大器的负荷取代了CL而显现出来。) (b)则用C1来消除CL造成的相位滞后。
为解决Fig4.的问题,则可在输入保护电阻上并联一个尺寸适当的电容。一般被叫做“输入电容取消值”的近似值约为10pF~100pF。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)