计算机辅助工程(CAE)软件工具需要花点时间才能熟练使用,但通过预测不同工作条件对电路或系统的影响,这些软件工具能够在产品设计周期中节省大量时间。这些工具在射频/微波设计领域中已经不是什么新生事物了,但它们有助于高效且极具性价比地满足用户的设计要求。了解目前可用的各类CAE软件工具是发挥这些工具最大作用的第一步。
射频/微波CAE工具的起源可以追溯到四十多年前。Les Besser常被人尊称为“微波软件之父”,因为他于1970年在飞兆半导体公司(Fairchild)的微波事业部开发过一款名为“Speedy”的程序,后来又开发了COMPACT(微波无源与有源电路的计算机优化)。许多公司都曾尝试使用散射(S)参数和软件来帮助设计射频/微波电路,包括德州仪器(TI)及其CAIN-01程序。
这些早期的软件工具是为时间共享型计算机编写的,多个不同用户只能轮流使用。在20世纪90年代初推出的IBM个人计算机(PC)改变了为微波行业开发软件的方式。曾在1980年收购COMPACT的COMSAT公司为PC机开发了SuperCOMPACT-PC,还有一款名为AUTO-ART的版图设计程序。Synergy Microwave公司主席Ulrich Rohde后来又从COMSAT公司手里收购了COMPACT和Super-COMPACT,并对这两款产品作了进一步完善。随后又有许多软件公司兴起,包括位于加州西湖村市的EESof公司以及位于乔治亚州石头山的Circuit Busters公司。就拿EESof来说,该公司专门为IBM PC和类似计算机平台开发出了Touchstone微波设计软件。
在高频工程师开始设计射频/微波电路之前,必须对组成电路的“构建材料”的质量有一定的了解,包括印刷电路板(PCB)、集成电路(IC)和无源电路元件等。软件工具可以包含电路元件、IC甚至PCB材料的扩展选择等大型库,但无法指明可能产生用户严格性能要求的各种成分的秘密组合。举例来说,用于高频电路的PCB材料在一些关键的电气和机械参数方面有很大的变化,比如相对介电常数、损耗因子以及热膨胀系数(CTE)等。了解行业标准的电路构建模块的局限性有助于高效地使用高频CAE软件工具。
对于刚开始启动项目的设计团队来说,射频/微波设计软件的选择似乎是压倒一切的工作。市场上有许多软件工具,有用于线性和非线性电路分析与设计的,有用于电磁(EM)分析与设计的,也有用于系统级设计的。现代商用CAE软件包往往都配备好了器件模型,包括像封装在一起的和单片分立二极管、晶体管和封装在一起的IC等有源器件。不过,一款有用的软件工具必须提供导入数据的途径,例如从微波矢量网络分析仪(VNA)导入,目的是要基于S参数数据为新的或还没有收录在软件器件库中的器件建立模型。
不同类型的设计软件具有不同的功能。虽然一款电路仿真器或完整的设计工具套件可能非常适合传统的微带线或带状线电路设计,但一款平面三维(3D)电磁(EM)仿真器可以让人更深入地了解作为天线或天线阵列一部分的电路的行为。完整的3D电磁仿真器可以分析感兴趣对象的所有三维电磁场,比如同轴连接器或辐射电缆(有时也被用作天线)。
事实上,包括Sonnet Software在内的许多家公司都提供独立的电磁仿真器程序。也有些公司将电磁仿真器作为软件工具套件中的一部分,这些包括安捷伦科技(Agilent)、ANSYS、Computer SimulaTIon Technology(CST)和明导国际(Mentor Graphics)。这些电磁仿真器中采用的技术多种多样,从明导公司IE3D电磁仿真器中帮助加速二维(2D)平面天线仿真的矩量法(MoM)分析技术到ANSYS基于频域的高频结构仿真器(HFSS)电磁仿真器中采用有限元方法(FEM)分析技术的完全3D仿真。CST公司的Microwave Studio套件通过基于时域的完美边界近似(PBA)分析方法也提供3D电磁分析功能。
一些商用的软件设计包非常专业。例如,AMPSA公司专注于放大器和阻抗匹配程序的设计。Ampsa放大器设计向导(ADW)与传统的设计优化程序完全不同,它能够借助电路元件综合技术为放大器目标性能更快地找到所需要的电路元件值。该软件为了得到最适合的元件值会执行大量系统化搜索,然后对找到的电路元件进行优化。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)