利用驱动芯片快速响应的优势 实现高画质的LED显示屏

利用驱动芯片快速响应的优势 实现高画质的LED显示屏,第1张

利用驱动芯片快速响应的优势 实现高画质的LED显示屏

前言
现今LED显示屏运用越来越广,凡举金融证券、体育、交通讯息、广告传递等都可以看到它的足迹,也因为最近几年LED成本下降及亮度的提升再加上LED显示屏更具有耗电少、寿命长、视角大及响应速度快等优势;而且可以根据不同地点及需求订制相对应的尺寸,在市场上快速崛起成新一代的传播媒体宠儿,其条件更是其他大型显示设备无法比拟的。本文将进一步一一说明如何不变更电路设计,利用驱动芯片的快速响应优势来实现高画质的LED显示屏。


整体速度的提升- 更高的刷新频率与换帧频率
    LED是经由流过的电流来驱动的,而通过的脉冲宽度可以控制LED的亮度及灰度,简单来说若不考虑系统端的设计,刷新频率(refresh rate)是经由寻址时间(Tacc)及流过LED的电流速度所决定的;而换帧频率(frame rate)的提高除了系统的的支持外更需要更快的寻址时间,而寻址时间与传输的频率(DCLK)与寻址数有强烈的正相关。

例如:有一全彩户外显示屏其寻址数为768,若是使用不同的频率则整体的寻址时间也会不同
      工作频率为10Mhz -> 768X0.1us = 76.8us
      工作频率为30Mhz-> 768X0.033us = 25.6us                        两者的寻址时间相差3倍

而电流流过LED 的速度决定LED显示屏的刷新频率,举例说明若一LED显示屏其寻址数皆为768、工作频率为30Mhz、灰阶调整为8位(bits)、亮度调整皆为2位(bits)、每子场的间隔时间为4us;传统驱动芯片其显示的脉冲宽度为250ns,而SnapDriveTM驱动芯片的脉冲宽度为50ns,两者可以达到的刷新频率有明显的差异  

A. 传统驱动芯片(脉冲宽度为250ns)
权重安排为 1/64, 1/32, 1/16, 1/8, 1/4, 1/2 ,1 ,2 ,4 ,8, 16,32
Tfr=25.6usx[6+63]+5x4us = 1786.4us
Fr = 559.7Hz

B. SnapDriveTM驱动芯片(脉冲宽度为50ns)
权重安排为 1/512,1/256, 1/128, 1/64, 1/32, 1/16, 1/8, 1/4, 1/2 ,1 ,2 ,4
Tfr=25.6usx[9+7]+8x4us=441.6us
Fr=2264.5Hz


显示灰阶度提升
        目前市场上一般通用的传统驱动芯片其OE响应时间约为250ns ,若以上述的例子来看其最高的灰阶为8位;亦即R,G,B各有256个灰阶度。其色彩为256X256X256 = 166777216 约1千六百万色。若想将灰阶度提高至14位亦即16384X16384X16384=4.39千亿色;两者之间的刷新频率亦会得到明显的差异

A. 传统驱动芯片(脉冲宽度为250ns)
权重安排为  1/64, 1/32, 1/16, 1/8, 1/4, 1/2 ,1 ,2 ,4 ,8, 16 ,32 ,64, 128, 256, 512, 1024, 2048
Tfr=25.6usx[6+4095]+5x4us = 105005.6us
Fr = 9.5 Hz

B. SnapDriveTM驱动芯片(脉冲宽度为25ns)
权重安排为 1/1024, 1/512, 1/256, 1/128, 1/64, 1/32, 1/16, 1/8, 1/4, 1/2 ,1 ,2 ,4 ,8, 16, 32, 64, 128
Tfr=25.6usx[10+255]+9x4us=6820us
Fr=146.6Hz

利用驱动芯片快速响应的优势 实现高画质的LED显示屏,第2张

以下为台湾迅杰科技推出包含SnapDriveTM技术之驱动芯片测试条件及结果,藉图1及图3可以明显看出其驱动芯片在极小的OE脉冲宽度下其输出电流仍为线性输出,而传统驱动芯片则无法提供线性的输出。

测试条件:
Vcc=5V ,Iout=38.3mA,RL=47Ω,CL=13pF
利用驱动芯片快速响应的优势 实现高画质的LED显示屏,第3张
利用驱动芯片快速响应的优势 实现高画质的LED显示屏,第4张
利用驱动芯片快速响应的优势 实现高画质的LED显示屏,第5张

针对不同的输出电流斜率的驱动芯片,利用仿真软件(HSPICE2007)我们在失真率方面我们得到不同的结果

欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/dianzi/2592887.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2022-08-08
下一篇 2022-08-08

发表评论

登录后才能评论

评论列表(0条)

保存