无线基站通信标准,例如GSM、UMTS和(当前的) LTE,定义了不同参数的下限指标,包括接收机的灵敏度和大信号性能。这些关键指标对无线基站中的每个射频功能模块提出了设计挑战。在接收信号通路,混频器性能主要影响接收机的灵敏度和大信号性能。本文介绍了混频器的关键性能和参数,有助于设计接收通道时选择最佳的混频器。
无线基站接收机
我们首先分析无线基站中的典型接收机方框图(图1)。
图1. 无线基站接收机典型框图
因为接收到的信号经过两次连续的下变频,变换到较低频率,这些接收机被称为超外差式接收机。如图所示,信号通过天线接收,然后经过第1级RF滤波器滤波,该滤波器通常用于滤除无用信号。随后,该滤波器输出通过一个LNA (低噪声放大器)进行放大,该放大器通常具有非常低的噪声系数。
放大信号通过第2级RF滤波器再次进行滤波,该滤波器滤除限制混频器性能的无用信号的同时还对频率范围加以限制。经过滤波后带宽受限的信号被送入第一级混频器,在此通过与LO (本振)信号混频,下变频至一次IF频率。根据接收机结构的不同,该IF信号可以进一步下变频至更低的二次IF频率,然后送入基带进行解调处理。
现在,我们开始研究接收链路中的混频器。因为影响接收机灵敏度和大信号性能的主要因素是混频器参数,应该对其进行仔细分析。
混频器参数
混频器的噪声系数表示从输入至输出的SNR (信噪比)衰减,该比值通常用对数表示(dB),如式1所示:
混频器的噪声系数 (式1)
另一个重要参数是变换增益(或变换损耗)。变换增益是判断混频器配置为有源架构或无源架构的重要依据。无源混频器不包含放大信号的元件,存在插入损耗(称为变换损耗);而有源混频器包含有源器件,能够提供变换增益。
可以采用两种配置实现有源混频器:基于平衡(吉尔伯特单元)架构设计的集成混频器,或结合IF放大级的无源混频器,提供增益而非损耗。由于集成混频器具有放大能力,不需要额外的IF放大级补偿插入损耗。
变换增益 (式2)
变换增益(或损耗)用对数表示,单位为dB,如式2所示,是频率的函数,定义在混频器的整个工作频率范围内。为了保证最佳接收性能,变换增益/损耗的变化应该在规定频率范围内尽可能小。
由于无线基站通常工作在温度波动的环境下,应该给出整个工作温度范围内变换增益/损耗的规格,而且要求变化量尽可能小。由于正常工作条件下,较小的温度变化范围对设计裕量的要求也较小,而设计裕量对于系统规划非常有用,因此,温度范围在设计中是非常重要的因素。
混频器在大信号下的特性利用一个称为“1dB压缩点” (该指标也称为压缩点(IP1dB))的混频器参数以及2阶、3阶交调截点(IP2和IP3)表示。根据式3所示线性表达式,IP1dB压缩点用于预测混频器增益降低1dB时对应的输入功率:
POUT = G × PIN(式3)
当两个频率几乎相同的大信号作用到混频器的输入时,混频器应该也能够转换微弱信号。该性能通常用3阶交调截点(IP3)表示,该参数与噪声系数一起表示混频器的动态范围。IP3较大说明混频器的线性度较高。混频器数据资料还应提供混频器的输入、输出交调截点,利用式4,可以根据IIP3 (输入交调截点)计算OIP3 (输出交调截点),反之亦然:
OIP3 = IIP3 + G(式4)
式中,OIP3是混频器的输出交调截点,IIP3是输入交调截点,G为变换损耗或增益。由此,对于无源混频器,混频器的变换损耗降低了OIP3。为了达到接收机要求的总体噪声系数,应该在RF或IF增益级对插入损耗进行补偿(噪声系数是在设计接收机时必须考虑的另一参数)。
无源混频器与有源混频器
无源混频器的主要优势在于它们也可以用作上变频器。换句话说,其输入信号可以转换到更高频率。上变频器通常用于发射链路,它将IF信号变换到最终的发射频率。因为无源混频器既可用于发射链路,亦可用于接收链路,只需订购一款器件或保留一款器件的库存。
“直接下变频接收机”将输入信号直接下变频至基带,无需IF信号。对于这种接收机,混频器的数据资料应该规定另一重要参数,即端口间隔离度。该参数用于衡量LO信号和混频器输入信号之间的隔离度。如果端口间隔离度不足,LO将与其自身信号混频,从而在混频器输出产生一个直流失调,进而降低接收机性能。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)