基于ML2035低频正弦信号发生器的设计

基于ML2035低频正弦信号发生器的设计,第1张

  1 引 言

  正弦信号发生器是一种广泛应用的信号源,对它的要求也随着技术的发展越来越高。传统的正弦信号发生器产生电路一般采用模拟电路来实现,低频输出的频率的稳定度和精度等指标都不高。为了要获得高稳定度的信号源,往往要采用锁相环来实现,但电路复杂且体积庞大。

  随着电路系统的数字化发展,直接数字频率合成( Direct Digital Synthesizer, DDS) 作为一种波形产生方法,得到了广泛的应用。DDS 技术具有产生频率快速转换、分辨率高、相位可控的信号。这在电子测量、雷达系统、调频通信等领域具有十分重要的作用。若选用通常的DDS 芯片来实现低频正弦信号发生器,往往需要外部微处理器,电路较为复杂。而ML2035可以不需要其他的外围器件。

  2 ML2035 的工作原理

  ML2035 原理框图如图1 所示。其内部主要由串行输入接口、相位累加器、正弦波发生器和晶体振荡器4 大部分组成。串行输入接口电路负责将用户输入的16 位串行频率控制字转化为并行数据, 并传送给相位累加器,控制相位生成的速度;然后,相位累加器把21 位累加和的高9 位作为有效数据传送给正弦波发生器;正弦波发生器把这9 位数据的最高位作为符号位,次最高位作为象限位,低7 位作为正弦搜索表的查表地址,以生成4 象限的波形样值数据;最后,波形数据传送到一个8 位的数模转换器, 形成正弦脉冲波,经过一个低通滤波器平滑波形后输出。下面分别介绍这4 部分的组成和原理。

  基于ML2035低频正弦信号发生器的设计,第2张

  图1 M L2035 的原理框图

  2. 1 相位累加器

  相位累加器如图2 所示,它是DDS 的核心部件,由加法器和相位锁存器构成。每来一个时钟脉冲, 相位寄存器的输出就增加一个步长的相位增量值,加法器将频率控制数据与累加寄存器输出的累加相位数据相加,把相加结果送至累加寄存器的数据输入端。相位累加器进入线性相位累加, 至满量程时产生一次计数溢出,这个溢出频率即为DDS 的输出频率。加法器A 组的低16 位( A15 ~ A0 ) 接串行输入接口电路的16 位锁存器输出,高5 位( A20 ~ A16 ) 全部接地。B 组( B20 ~ B0 ) 作为后端锁存器的反馈输入。

  基于ML2035低频正弦信号发生器的设计,第3张

  图2 相位累加器

欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/dianzi/2593189.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2022-08-08
下一篇 2022-08-08

发表评论

登录后才能评论

评论列表(0条)

保存