开源深度学习库排名三个重要指标:Github上的活动、Stack Overflow上的活动以及谷歌搜索结果

开源深度学习库排名三个重要指标:Github上的活动、Stack Overflow上的活动以及谷歌搜索结果,第1张

我们对23种用于数据科学的开源深度学习库作了排名。这番排名基于权重一样大小的三个指标:Github上的活动、Stack Overflow上的活动以及谷歌搜索结果。

排名结果

下面是23种用于数据科学的开源深度学习库的排名,按照Github上的活动、Stack Overflow上的活动以及谷歌搜索结果来衡量。该表显示了标准化分数,1这个值表示高于平均值(平均值=0)一个标准偏差。比如说,Caffe高于Github活动方面的平均值一个标准偏差,而deeplearning4j接近平均值。

开源深度学习库排名三个重要指标:Github上的活动、Stack Overflow上的活动以及谷歌搜索结果,开源深度学习库排名三个重要指标:Github上的活动、Stack Overflow上的活动以及谷歌搜索结果,第2张

方法详见如下

结果和讨论

排名基于权重一样大小的三个指标:Github(星标和分支)、Stack Overflow(标签和问题)以及谷歌结果(总体增长率和季度增长率)。这些是使用可用的API获得的。制作一个全面的深度学习工具包列表很棘手——最后,我们列出了我们认为有代表性的五个不同的列表(参阅下面介绍的方法,可了解详细信息)。计算每个度量指标的标准化分数后,我们就能看到哪些软件包在每个类别中脱颖而出。

TensorFlow凭最大的活跃社区一路领跑

在所有衡量指标中,TensorFlow比平均值高出至少两个标准偏差。相比第二大流行框架:C++affe,TensorFlow的Github分支数量几乎是其三倍,Stack Overflow问题更是其六倍以上。TensorFlow最初由谷歌Brain团队于2015年开源,发展势头已超过历史更悠久的库,比如Theano(第4位)和Torch(第8位),跃居我们榜单的首位。虽然TensorFlow附带在C++引擎上运行的Python API,但本榜单上的几种库可以使用TensorFlow作为后端,提供各自的接口。这些库包括Keras(第2位,很快将成为核心TensorFlow的一部分)和Sonnet(第6位)。TensorFlow之所以人气这么高,可能是由于它结合了通用深度学习框架、灵活的接口、外观整洁的计算图形可视化以及谷歌庞大的开发者和社区资源。

Caffe尚未被Caffe2所取代

Caffe在本榜单上排名第三,Github上的活动比其所有竞争对手(TensorFlow除外)都要多。Caffe历来被认为比Tensorflow更专门化,当初专注于图像处理、对象识别和预训练的卷积神经网络。Facebook于2017年4月发布了Caffe2(第11名),Caffe2已经跻身于深度学习库的上半部分。Caffe2是一种更轻量级、模块化、可扩展的Caffe,它包括循环神经网络。Caffe和Caffe2是独立的代码库,所以数据科学家可以继续使用原来的Caffe。然而,一些迁移工具(比如Caffe Translator)为使用Caffe2来驱动现有的Caffe模型提供了一种手段。

Keras是最流行的深度学习前端

欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/dianzi/2598936.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2022-08-09
下一篇 2022-08-09

发表评论

登录后才能评论

评论列表(0条)

保存