模拟电路广泛地包含基准源。这种基准源是一个直流量,它与电源和工艺参数的关系很小,但与温度的关系是确定的。本文对四种基本MOS管基准电压源进行分析和仿真。
1 MOS分压基准电路一个最容易想到的基准电源就是在两个电源之间进行分压而得到。当然,用来分压的器件可以是无源器件也可以是有源器件。但是这样得到的基准电压与电源电压成正比。
电路如图1所示。图1(a)是由电阻和二极管联接的MOS管构成的分压器。Hspice下取电源电压VDD=3.3V,W/L=1.8/0.18μm,取电阻为4kΩ时,其温度特性如图2(a)所示。温度在0~80℃变化时输出Vref在1.195~1.245V之间变化。如图2(b)所示,电源电压在0~3.3V变化时,输出电压Vref在0~1.245V之间变化。
图1(b)是由两个MOS管串联构成的分压电路。其温度特性如图3(a)所示。温度在0~80℃变化时输出Vref在1.236~1.26V之间变化。在图3(b)中,电源电压在0~3.3V变化时,输出电压Vref在0~1.26V之间变化。可见,输出电压依赖于电源电压的变化而变化非常明显。
2 自偏置MOS管基准电压源
电路如图4所示。(W/L)1=(W/L)2=1.8μm/0.18μm,(W/L)3=(W/L)4=1.8μm/0.36μm。取R1=100Ω时,仿真结果如图5所示。输出电压Vref对电源电压的依赖性依然很强。可见,温度在0~80℃变化时,输出电压在1.14~1.24V变化。
3 带启动电路的自偏置MOS管基准电压源
在图4电路中,当电源上电时,所有的晶体管均传输零电流,因为环路两边的分支允许零电流,则它们可以无限期地保持关断。这中问题被称为电路的启动问题。如图6所示,M1、M4和M7组成启动电路。图中M1、M4、M5、M6和M7管子的宽长比相同为1.8μm/0.18μm,(W/L)2=0.9μm/0.18μm,(W/L)3=0.72μm/0.18μm。其输出电压特性曲线如图7所示。可见,温度在0~80℃变化时,输出电压在1.009~1.016V变化,温度特性较好。
4 高精度MOS管电压源
图8所示电路是在图4的基础上增加了一个差分运放电路,通过该运放强制使得M1和M2的漏一源电压相等,从而极大地削弱沟道调制效应产生的影响。而运放的输出为M1和M2提供了栅极偏置电压。
图8中M1-M2、M5-M10的W/L=1.8μm/0.18μm,M3-M4的W/L=3.6μm/0.18μm。仿真结果如图9所示,温度在0~80℃变化时,输出电压在661.4~662.6mV之间变化,温度特性很好。电源电压在2.5~3.3V变化时,输出电压在580~660mV之间变化。
5 小结基准电压源电路作为模拟集成电路不可缺少的模块,对其进行分析和研究具有重要意义。本文通过Hspice对四种MOS管基准电压源电路进行仿真,给出了电路图、电路参数和仿真结果。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)