最基础电学电路:仿生避障机器人制作(多图)

最基础电学电路:仿生避障机器人制作(多图),第1张

这是一个简单到令人发指的仿生避障机器人,仅由电池开关马达组成最基础的电学电路,就能表现出类似自然界生物的智能!在遇到障碍物时会掉头,看起来有点象一只疯狂的小强。只要有基本的物理电学基础就可以自行制作了,你就不想自己做一个在朋友面前炫耀一下 "这就是我做的智能机器人"么?

一般智能的机器人都是用单片机芯片(MCU微处理器)做控制,简单一点的也需要由一些电阻电容之类的电子元件组成的电子电路做控制。作为PVC系列机器人的第一个项目,这里将介绍一个电路最简单的机器人,其不仅不需要单片机芯片,就连最普通的电阻、电容等电子元件也不用,完全是一个仅由电池、开关、马达组成的最基础的电学电路,一般只要有基本的物理电学基础就可以自行制作了,也正因为如此,在本PVC系列教材没有进到深入内容的时候就对其进行介绍。

本项目主要面向DIY机器人的初学者,可以让大家回顾一下物理电学基础,然后侧重在练习动手制作能力,包括基本的机械结构的设计与制作,以及基本的电路连接技能。如果是对此已经非常熟悉的朋友,可以跳过本章节。

最基础电学电路:仿生避障机器人制作(多图),第2张

这是一个简单的避障机器人,所谓“避障”即避开障碍物,实际上就是遇到障碍物时会转弯掉头。

以下为效果视频,为了拍摄方便是放在一个小盒子里的,由于地方窄动作也比较快,看起来有点象一只疯狂的小强,如果放在地上则会满屋子跑,追都追不上。

在此,我给本项目的避障机器人再起一个外号——疯狂的小强,呵呵。

1   基本原理

本项目的避障机器人采用三轮传动结构:前面左右两边的两个轮子是主动轮,各接一个电机作为动力;后轮是从动轮,起到平衡的作用。

1.1   运动机理

控制前面两个轮子的转动方向就可以控制整个机器人行进的方向:

1、左右两个前轮都向前转,则机器人向“正前方”直线前进;

2、左右两个前轮都向后转,则机器人向“正后方”直线倒退;

3、左前轮向后转,右前轮向前转,则机器人将以后轮为轴心逆时针转动,即实现向“右后方”转弯倒退;

4、左前轮向前转,右前轮向后转,则机器人将以后轮为轴心顺时针转动,即实现向“左后方”转弯倒退。

最基础电学电路:仿生避障机器人制作(多图),第3张

1.2   控制原理

在机器人的头部用钢丝做两根触须,一左一右各连接到一个碰撞开关,分别控制两个前轮的旋转方向。

特殊注意一下,左右触须与对应控制的电机是交叉过来的,即:左边的触须连接右边的碰撞开关,控制右边的电机;右边的触须连接左边的碰撞开关,控制左边的电机。

最基础电学电路:仿生避障机器人制作(多图),第4张

(1)无障碍物

当前方都没有障碍物,左右两个轮子都向前正转,则机器人向“前方”直线前进。

(2)左前方有障碍物

当左前方有障碍物,在左边触须碰到障碍物时,控制右边的轮子反转,则机器人向“左后方”倒退并转弯,即方向转向了障碍物的右边,从而避开了左边的障碍物。

向后倒退转弯会持续一会,在完成转弯之后,左边触须不再碰到障碍物,则两个轮子都正转,机器人继续向新的没有障碍物的“前方”直线前进。

(3)右前方有障碍物

当右前方有障碍物,在右边触须碰到障碍物时,控制左边的轮子反转,则机器人向“右后方”倒退并转弯,即方向转向了障碍物的左边,从而避开了右边的障碍物。

向后倒退转弯会持续一会,在完成转弯之后,右边触须不再碰到障碍物,则两个轮子都正转,机器人继续向新的没有障碍物的“前方”直线前进。

(4)正前方有障碍物

当正前方有障碍物,左右两边的触须都会碰到障碍物,控制左右两边的轮子都反转,则机器人向“正后方”倒退,从而避开障碍物。

在直线倒退持续了一会后,左右两边的触须都不再碰到障碍物,则两个轮子都正转又变成直线前进;然后又会遇到正前方的障碍物又会直线倒退,再直线前进……如此反复变成一个死循环。

理论上会出现以上这样的问题,但是实际上并不会,因为无论是左右轮的摩擦系数有所差异,还是左右两组电机的驱动功率有所差异,或是左 右两组电机的电源的电量有所差异,又或是障碍物左右两部分表面的光滑程度有所差异,都会导致实际上左右两边的触须碰到障碍物有一个时间差,都无法做到两边 轮子同时反转,也就是说向后倒退的时候不是完全的直线而是会有所偏移。而且即便第一次是直线后退,但在往复几次碰撞之后肯定会出现偏移,最终解除循环避开 障碍物向新的方向前进。

在以上视频中,我们也可以看到这一有趣的一幕,机器人连续几次反复撞上“墙壁”,最后还是会重新转向另外的方向。

从视频中,我们除了看到以上这种特殊情况外,另外还有一种情况,就是有些时候机器人会卡在墙角停顿了好一阵,然后才转向。这是因为有些时候由于触须碰撞墙壁的角度比较偏,不是正面碰撞,导致碰撞的力度不够,触须无法立即触发碰撞开关响应,而机器人在电机的推动下不断的挤向墙壁,缓慢的挤压后才触发了碰撞开关控制转向,也就是看到了机器人在墙角停顿了一会才转向的情景。出现这情况,如果电机的输出功率不足,或是由于电池的电量下降导致动力不足,可能会导致机器人在墙角无力挤压触发碰撞开关,最终变成卡死在墙角,这个时候要么是换大功率的电机,要么就是换新电池。

1.3   电路原理

本项目的电路非常简单,由一个最基本的电学电路组成。

1、机器人的动力是由两个直流电机提供的,众所周知,直流电机的两个电极连接直流电源,通过改变两个电极所连接电源的正负极,可以改变电机的旋转方向(顺时针或逆时针)。

2、电源为两节7号电池,每节电池作为一个独立的供电单元,每个电机某一时刻只有一节电池为其供电。如果前进时是一节电池供电,后退时则是另外一节电池以相反电流的方式供电。

最基础电学电路:仿生避障机器人制作(多图),第5张

3、通过三引脚的碰撞开关,可以控制电机采用哪一单元的电池进行供电,而碰撞开关则连接触须,触须被挤压则碰撞开关被触发。 下图为其中一个电机的控制原理。

最基础电学电路:仿生避障机器人制作(多图),第6张

4、机器人头部有两根钢丝作的触须,触须分别连接在两个碰撞开关上(注意两根钢丝对应的碰撞开关是交叉的,即:“左—右”钢丝,对应“右—左”碰撞开关)。

(1)没有障碍物时,触须没有被挤压,不触发碰撞开关,碰撞开关默认的通路,给电机供给一个“正方向”的电流,电机于是“顺时针方向”旋转。

(2)有障碍物时,触须被挤压,触发碰撞开关,碰撞开关断开默认通路,连接另外的一组通路,给电机供一个“反方向”的电流,电机于是“逆时针方向”旋转。

这里给出完整的电路原理图:

最基础电学电路:仿生避障机器人制作(多图),第7张

为了方便大家,这里再给出实物电路接线图供参考。

最基础电学电路:仿生避障机器人制作(多图),第8张

欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/dianzi/2611856.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2022-08-10
下一篇 2022-08-10

发表评论

登录后才能评论

评论列表(0条)

保存