既然说机器学习,就从什么机器学习开始,相对而言,机器学习是一个比较泛的概念
初看的话,会觉得机器学习和人工智能,数据挖掘讲的东西很像,实际他们之间的关系可以概括为:
机器学习是人工智能的一个子方向
机器学习是数据挖掘的一种实现方式
举个简单的例子,给一些苹果和香蕉,人会通过特征的判断做区分,并且记忆这些特征,下次来了一个新的苹果或者香蕉的时候,就可以判断是香蕉还是苹果了
作为任意一个算法或者说用程序执行的数学问题,总需要一些输入,一些输出
对于机器学习而言,输入就是特征所构成向量的向量,或者说是一个矩阵
如果只有一个特征,输入就是一个向量了,当然,向量是一个弱化的矩阵概念,统一称作矩阵
• 目前机器学习的核心技术是基于矩阵的优化技术
输入:矩阵 – 待学习的信息
输出:模型 – 总结出的规则
因此,目前主流的机器学习技术就可以形式化为
•输入:特征矩阵 X、标注向量 y
X 是特征矩阵,不包括“样本名称”和“样本 标注”
y 是标注向量,即“样本标注”那列
•输出:模型向量 w
•期望:X·w 尽可能接近 y
多种优化算法可以解 w,区别在于如何定义 “尽可能接近”
举个例子来说,要计算广告的CTR
这个例子中
目标是要根据已知的auc特征,猜测这个目标广告是否会被点击
例子中特征只有两个,query关键词和“是否飘红”,判断结果是是否点击
好了,现在问题和输入输出都有了,具体解决这个问题,就可以选用相关的算法了
前面定义里面有这么一个隐含的关键点:X w 尽可能接近 y
如何定义这个“接近”,思路不同,算法就不同
比如对于LR (LogisTIc Regression)和SVM(Support Vector Machine)是不同的,作为样例,可以按照下图理解
数学形式表示,就是
具体算法细节不是这里讨论的重点,在这两个算法中,“接近”的定义不同
学术的讲,就是“优化目标不同”
无论是否相同,我们都至少可以选一个优化目标了
有了优化目标,下面要做的就是如何求解这个优化目标了
一般现在用的思路主要是
L-BFGS,CDN,SGD这一些
把上面这一些要素放在一起,就有了完整的一个机器学习问题
Part 2: 如果你要用机器学习的方法去解决问题
就需要注意三个方面的优化了:
算法,数据,特征
我们下面分开来说
算法,就是优化目标 + 优化算法
从优化目标的角度,工业界往往没有那个资源或者实力去研究新的算法,大多是在使用已有算法或者在已有算法的基础上做扩展
从优化算法的角度,主要是三点:
更小的计算代价
更快的收敛
更好的并行
这三点也比较好理解,对于一个工程问题,计算代价小,机器就可以做别的事情,更快的收敛,就可以更好的把结果投入使用,更好的并行,就可以用现有的大数据框架解决问题
训练数据,就是尽可能和实际同分布的数据 + 尽可能充分的数据
机器学习算法中,由于期望的往往是总的误差最小,所以很可能讲数据量小的类目判别错误
如果样本数据和实际数据分布差异大的话,对于实际的算法效果一般都不好
充分的数据,这个就好解释了,数据越充分,训练就越充分,就好比考试前做的练习越多,一般效果越好
特征,就是尽可能包含足够多的需要识别对象的信息
一个简单的例子,如果只有一个特征,对于水果的判断往往偏颇,就会造成下面的结果
随着特征的增多,训练就会准确
往往对于一个工程问题来说,特征是决定最多的方面
一个算法方面的优化,可能只是优化了2~3%的效果,但是特征可能就是50~60%了,一个工程项目七八成的精力往往都是画在特征选取上的,比如百度CTR预测,特征数据目前就是100亿级别的。
最后来说一点关于deep learning 的东西
Deep learning和目前的机器学习算法(Shallow Learning)最大的区别在于特征层数
目前的机器学习算法主要是一层的,就是从特征直接推断是结果;
而Deep Learning和人类的处理问题的结果更接近,是由特征推断出一些中间层的结果,进而推断出最终结果的;
比如视觉是由一些点,进而判断出一些边,进而判断出一些形状,然后才是整体的物体的。
之前大量使用Shallow learning 主要是因为 Shallow Learning有很好的数学特征
解空间是凸函数
凸函数有大量的求解方法
凸函数优化可以参考
**Convex OpTImizaTIon
**
**~boyd/cvxbook/
而Deep Learning则容易找到局部最优解,而非全局最优解
Deep Learning解法可以参考
G. Hinton et al., A Fast Learning Algorithm for Deep Belief Nets. Neural ComputaTIon, 2006.
也可以看Andrew NG最近的课程
这里有最新的中文翻译http://deeplearning.stanford.edu/wiki/index.php/UFLDL教程
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)