人工智能在人脸识别上还存在什么优缺点

人工智能在人脸识别上还存在什么优缺点,第1张

自上世纪50年图灵的一篇论文《机器人会思考吗?》开启人工智能的大门,人工智能的研究便一时成为科学、资本的热点,但先后经历几次大起大落。然而去年一场人机大战,再次掀起了一场全球人工智能热潮,至此AI吸引了无数企业参与,无需质疑,人工智能是当前科技界热门的事件,也被视为新的科技革命,人工智能(AI)席卷了整个世界。

由于AI被视为下一个科技革命,过去一年掀起来了一股的热潮,不仅来自科技巨头,也涌现了众多在该领域的创新创业企业,以及国家政策支持下,将有助于开发出全新的人机交互模式,可以说让人工智能以的方式入侵着我们的世界。在未来人工智能会在所有的领域彻底改变人类,甚至可以说:谁能在人工智能领域取得突破,意味着谁就赢得未来,也预示着人工智能迎来好时代,逐渐从科幻、科研进入人们生活当中。

你很快就会注意到,几乎所有来自技术领域的东西都或多或少涉及人工智能或机器学习。而他们讨论人工智能的方式,听起来几乎像是在宣传:人工智能可以解决所有需求! 虽然我们确实可以利用人工智能技术做出很多事情,但我们没有理解“智能”这个词的全部含义。智力意味着一个系统,在这个系统中,人类可以进行创造性的对话——一个拥有想法并能发展新想法的系统。也就是说目前对该技术的炒作可能已经超过了其真正的潜力,但安全性方面的可能应用无疑是非常可靠、令人兴奋的。

当许多人在提示您谈论安全性中的AI时会自动想到面部识别,但事实是它的真正价值在于其他地方。机器学习是AI的一个子集,可以帮助监控技术达到很高的准确性,并为中间商创造了更好的商机。且如今人工智能在算法与芯片领域的成熟及成本的下降,使得智能监控的商业化落地更加快速地普及,同时智能监控市场在寻求差异化竞争形成了百花齐放的形势。

检测精度

历史上看,使用视频分析生成警报的监视应用程序的主要关注点是,它们可能无法将人类与例如某种野生生物区分开来,这样便会产生虚假警报,浪费了时间和资源。但是机器学习可以帮助并应对这个挑战,因为它可以预先校准系统以检测实际威胁并忽略虚假威胁。在大多数基于安全性的应用程序中,用户仅想识别一个人或车辆,这两者都可能代表安全威胁。当它为视频分析提供支持时,机器学习工具使开发人员可以指示算法选择特定的特征和对象。更高的精度意味着监视人员的时间不会浪费在由物体或环境波动引起的不必要的警报,这意味着他们的生产率和注意力范围得到了提高,并且绩效得到了改善。

同样确定的是触发有意义的警报的能力是如何在确保周边安全方面带来现实利益。启用了机器学习的分析可以实时检测可疑事件,通过授权员工主动解决当前事件,而不是审查过去的事件,从而极大地改善了设施保护。

人与机器

尽管AI和自动化之类的技术对公司的运作方式产生了革命化的影响(使他们以更少的钱做更多的事),但企业领导者却自欺欺人,他们认为他们很快就能完全消除对工人的需求并削减相关成本。当然,我们越来越依赖于机器来执行手动任务,甚至为我们做出例如确定监视摄像机前面的形状是人还是树枝的这种小决定。但是,在安全这样的部门中,企业的生计或有时甚至是人们的生命受到威胁,人力投入的价值仍然是不可动摇的。

毫无疑问,机器学习对监视团队(工作过度和人员不足)将有很大的帮助,因为它可以过滤掉潜在的警报,阻止那些不符合标准的警报(因为他们不是人或车辆) 。当然,这使工作人员只有极少数的异常情况需要辨认。但是,当警报出现时,评估警报的责任仍然在于他们。比方说人脸可以通过化妆、整容等方式进行伪装,可能无法识别;也有可能通过照片等图像,而非本人实际面部识别通过,有较大安全隐患;以及来访人员是快递员还是小偷?下一步该怎么做?这些都是人工智能无法鉴别的,是人类智慧永远比人工智能更有价值的地方。

责任编辑:ct

欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/dianzi/2617278.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2022-08-10
下一篇 2022-08-10

发表评论

登录后才能评论

评论列表(0条)

保存