噪声指数(Noise Figure)主要测量的是组件的信噪比(Signal-to-noise RaTIo, SNR)性能,信噪比是误码率(BER)和载波/噪声比(C/N)等大部分数字通信参数的基础。以往只会针对射频(RF)到射频的组件,也就是低噪声放大器(LNA),进行噪声指数测量,但在过去几年,低噪声放大器已被整合到接收器中,将信号从天线端带到模拟或数字基带的单元(I和Q),因此,测试射频到基带架构的噪声指数已经变得越来越普遍。
测试射频到基带架构的噪声指数已是射频组件量产测试必经的步骤,为缩短测试时间和降低测试成本,必须在自动化测试设备中导入冷噪声,或使用具任意波形发生能力噪声源的Y系数方法来进行测试。
射频到基带的前端电路包含一个与混频器串接的低噪声放大器,混频器可以将射频信号降频转换为基带信号,这样的组合在今日射频组件的大量生产(HVM)测试中,已经相当普遍。虽然测量这些组件的噪声指数所使用的方法与测量射频到射频组件的方法相同,但台式测试设备与自动化测试设备(ATE),以及射频到射频组件与射频到基带组件之间的运用方式还是有些不同。
噪声系数为噪声指数根本
噪声指数可测量出组件会带入多少噪声到系统中,在射频到基带的接收器中,通过噪声指数测量,可得知降频转换和放大过程会加入多少的噪声。噪声指数与信噪比这项基本的参数有关,从最早期的音响设备到最新一代的个人通信装置等各种电子应用中,信噪比都是极为重要的参数。 噪声系数(Noise Factor, F)虽然较少使用,却是噪声指数的根本。噪声系数是以线性的格式描述因某个组件所造成的信噪比降低程度:
(1)
噪声系数是在标准化的参考温度T=T0(IEEE订为290K,约17℃)下,将输入端的信噪比与输出端的信噪比相除的结果。温度之所以成为一项条件,是因为电子电路中的噪声主要是由组件传导媒介中的电子热扰动(Thermal AgitaTIon)所造成的,又称为热噪声。由图1描绘的方程式(1)可以看出这种噪声对组件的影响:经待测组件(DUT)放大后(增益值为G)的输入功率位准以及待测组件的输出端所增加的噪声降低了信噪比。请注意,输入信号和输入噪声都被待测组件放大,使得两者在待测组件输出端的位准都变高。然而,由于待测组件也会带入一些噪声,因此,输出端的总噪声会大幅提高。
信号通过半导体组件后,信噪比降低
图1 信号通过半导体组件后,信噪比降低。图中,输入信号(a)的峰值功率不高,且信噪比很理想,但输出信号(b)的峰值振幅变高,同时噪声底线也提高,导致整体的信噪比性能变差。
较常使用的术语是噪声指数,一般以NF代表,其定义与噪声系数有关,描述两者关系的方程式如下:
NF |dB = 10log10(F) (2)
噪声指数测量之道
测量射频到射频噪声指数的方法有好几种,包括Y系数(Y-factor)、冷噪声(Cold Noise)、双倍功率(Twice-power)等,然而,就主流的射频到基带组件而言,只有其中两种最常使用,分别是Y系数和冷噪声方法,两种方法各有其优点。
Y系数测量
测量噪声指数的Y系数方法可能是已知最古老的方法,大部分噪声指数量表和分析仪幕后所采用的正是这种方法。测量时,须将一个噪声源灌到待测组件的输入端,然后在待测组件的输出端测量噪声功率。如此来,即可得到噪声功率测量的比值,也就是Y系数,再进一步算出噪声指数。
Y系数方法须将噪声源灌到待测组件的输入端,如图2所示。测量时,要先将噪声源的电源打开再关闭,每一次都要在待测组件的输出端进行一次功率测量。Y系数的定义为“热”条件与“冷”条件下所测得之噪声功率(以瓦为单位)的比值:
(3)
“热” 条件指的是噪声源的电源为开启状态,并将噪声加到待测组件中,就像利用信号产生器提供电压或电源信号到待测组件的输入端一样。“冷”条件指的是噪声源的电 源未开启,但还是有连接到待测组件的输入端。几乎所有噪声源的“关闭”或“冷”条件状态的标准都提供一个50欧姆的终结负载到待测组件的输入端。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)