AI爆发带来的“超级摩尔定律”

AI爆发带来的“超级摩尔定律”,第1张

2018-11-12 10:31| 查看: 21| 评论: 0|来自: 半导体观察网

摘要: 人工智能和机器学习的爆炸式发展正在改变计算的本质。 说这话的是谷歌软件工程师Cliff Young,而谷歌是人工智能最大的实践者之一。 Cliff Young上周在硅谷的一个芯片研讨会发表了主题演讲,他说,AI的使用已经达到 ...




人工智能和机器学习的爆炸式发展正在改变计算的本质。


说这话的是谷歌软件工程师Cliff Young,而谷歌是人工智能最大的实践者之一。


Cliff Young上周在硅谷的一个芯片研讨会发表了主题演讲,他说,AI的使用已经达到了一个“指数增长阶段”(exponenTIal phase),与此同时,关于半导体发展的经验法则——摩尔定律——已经陷入停滞。


摩尔定律的内容是:集成电路上可容纳的晶体管数目,约每隔两年便会增加一倍。经常被引用的“18个月”是由英特尔的David House提的:每18个月,芯片的性能提高一倍。


“这个时间有点神经质,”Cliff Young说:“数字CMOS的增速正在放缓,我们也看到英特尔在10纳米芯片的生产方面面临困境,还有格芯(GlobalFoundries)已经宣布放弃了7纳米制造工艺研发,与此同时,深度学习进展迅猛,存在经济需求。”CMOS即Complementary Metal Oxide Semiconductor(互补金属氧化物半导体),是计算机芯片最常见的材料。


Young认为,由于传统芯片难以实现更高的性能和效率,来自AI研究人员的需求正在激增。他一口气列举了一些数据:arXiv上关于机器学习的学术论文数量每18个月就增加一倍;在谷歌,专注于AI的内部研究项目数量也每18个月增加一倍。更为激烈的是,执行机器学习神经网络所需的浮点运算量每三个半月就翻一番

AI爆发带来的“超级摩尔定律”,rr.jpg,第2张


Young说,所有这些计算需求的增长构成了“超级摩尔定律”,他称这种现象“有点可怕”,“有点危险”,“令人担忧”。


“为什么AI领域出现了这些指数级的增长?”他说,“部分原因是,深度学习确实有效。”


他说:“很长一段时间里,我的职业生涯都忽视了机器学习,因为那时尚不清楚这些东西会不会流行起来。”


但后来,图像识别等领域的突破开始迅速出现,很明显,深度学习“非常有效”。Young说:“在过去5年的大部分时间里,谷歌一直是一家AI-first的公司,我们以AI为基础重建了大部分业务,从搜索业务到广告业务等等。”


谷歌内部领导AI研究的是Google Brain团队,它的需求是“巨型机器”。例如,神经网络有时是通过他们使用的“权重”数量来测量的,这些变量被应用于神经网络,以形成对数据的 *** 纵。


传统的神经网络必须要计算的可能有数十万个这样的权重,甚至数百万,谷歌的科学家们说“请给我们一个tera-weight级的机器”,让计算机能够计算一万亿权重。


这是因为“每次你将神经网络的大小增加一倍,它的准确率就会提高。”AI的规则就是越大越好。


当然,为了应对这样的需求,谷歌一直在开发自己的机器学习芯片,即“张量处理单元”(Tensor Processing Unit,TPU)。由于传统的CPU和图形芯片(GPU)跟不上速度,TPU以及类似的部件是需要的。


Young说:“在很长一段时间里,我们都踌躇不前,并表示英特尔和英伟达在构建高性能系统方面做得非常好。但我们在五年前跨过了这个门槛。”


TPU于2017年首次亮相,标榜其性能优于传统芯片,引起了业界轰动。谷歌目前已进入TPU的第三次迭代,不过是在内部使用,并通过谷歌云提供按需计算节点。


AI爆发带来的“超级摩尔定律”,uu.jpg,第3张

TPU v3 Pod


谷歌继续制造越来越大的TPU实例。它的“pod”配置将1024个单独的TPU连接在一起,形成一台新型超级计算机,而且谷歌打算“继续扩展”这个系统。


Young说:“我们正在打造巨大的多处理器计算机,具有几十petabytes的计算力。我们同时向多个方向推进,tera-ops级的也在继续开发。”


他说,这样的工程“带来了超级计算机设计中会出现的所有问题。”


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/dianzi/2621030.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2022-08-10
下一篇 2022-08-10

发表评论

登录后才能评论

评论列表(0条)

保存