基于PIC16C71单片机的数字水温配制阀设计

基于PIC16C71单片机的数字水温配制阀设计,第1张

设计了一种基于PIC16C71单片机的数字水温配制阀。该配制阀采用NTC热敏电阻温度传感器,与固定电阻组成简单分压电路作为水温测量电路,利用PIC16C71单片机内置的8位A/D转换器把热敏电阻上的模拟电压转换为数字量,PIC16C71单片机控制直流电机驱动混水阀调节冷热水的混合比例实现水温调节。给出了控制电路图,对水温测量电路的参数选择和测温精度作了详细讨论。实验和分析表明,选用阻值较大的NTC热敏电阻和分压电阻可较好地解决热敏电阻因功耗较大造成的热击穿问题。

随着社会的发展,各种热水器及管道热水进入千家万户,人们在不同场合对水温的要求是多种多样的,经常需要把热水和冷水混合到需要的温度。可以控制各种热水器及管道热水的出水温度,能快速准确地调制出所需温度的热水,可用于淋浴、洗漱及其他需要恒温热水场所的水温智能配制阀,是一个有应用价值的技术。本设计正是顺应这种需要,以PIC16C71芯片为核心,控制机械部分自动调整冷水和热水的混合比例,实现出水水温的自动控制,解决了由于水压波动、水温变化或出水量改变引起的水温忽冷忽烫的难题,比手动调节用水温度方式有明显的节水效果。

1 系统结构和工作原理

热水和自来水作为控制阀的2个输入,利用混水阀控制冷、热水输入量和比例,混合后的水经出水口流出,供用户使用。安装在出水口的温度传感器感测出水口处的温度并通过测温电路传送给单片机。该调温水阀的组成如图1所示。当出水开关打开时,单片机把温度传感器测量的出水口处的温度与设定温度进行比较,需要时由PIC16C71来控制直流电机带动混水阀,来调整进入水阀的冷、热水的比例,从而控制出水的温度,当电机转到头时,单片机得到相应的信号,终止电机继续同向转动。通过温升或温降按键在25~50℃范围内对用水温度进行设置,LED数码管显示设定的用水温度值。若设定温度与传感器检测的温度不符,根据二者温差的大小,单片机输出不同宽度的脉冲电压信号控制直流电动机按不同的速度转动,通过传动机构驱动冷热水混合阀,改变冷水和热水的流入比例。当外界条件再次发生变化时,如水压减小或增大等,出水管水温与设定温度出现温差,此时单片机再一次控制电机转动,对水温进行自动调节,使出水口水温自动与设定用水温度保持一致。

基于PIC16C71单片机的数字水温配制阀设计,基于PIC16C71的数字水温配制阀的设计[图],第2张

2 控制面板和电路

设计控制面板按钮应最少化,并且使用方便,功能合理,控制 *** 作简便,仪表能显示出设置的温度。控制面板如图2所示,面板左侧的2位LED数码管用来显示预置的用水温度。面板右上方的温升按键、温降按键分别用来增加和减少预置出来水温的温度。面板右下方为手动开关,决定水阀的开关和出水量大小,当其置于“关”时,为关闭出水非工作状态。

基于PIC16C71单片机的数字水温配制阀设计,基于PIC16C71的数字水温配制阀的设计[图],第3张

图3是控制阀的电路图。系统使用低压直流电源,用PIC16C71单片机做控制,通过程序控制实现各项功能。

基于PIC16C71单片机的数字水温配制阀设计,基于PIC16C71的数字水温配制阀的设计[图],第2张

2.1 测温原理和参数选择

在图3中,热敏电阻RT为测温元件,用于测量出水口处的水温。一个固定电阻R16与热敏RT相串联组成分压电路,RT上的压降接到引脚通过电阻R17接AN0输入到PIC16C71的内置的8位A/D转换器,把模拟电压信号转换成数字信号,由程序读取实现测温。测温的关键是要选择合适的测温元件和合理的电路参数。这里选用的是一种负温度系数热敏电阻器(NTC),它采用玻壳封装、体积小、价格低,安装方便。NTC测温热敏电阻的主要优点是电阻温度系数大、灵敏度高、响应速度快,能进行精密温度测量,主要缺点是热电特性非线性现象严重。如使用C408503(25℃时,阻值50 kΩ,B值4 050 K,玻璃封装)NTC热敏电阻,在0~99℃范围内,电阻的灵敏度约为8 500~100 Ω/℃,非线性严重,使用时一般要进行线性补偿。这里通过计算,选择合理的测温电路参数,在有效的测温范围内,没有进行线性补偿,仅使用温度查表的方式就有效地解决了NTC测温电阻的非线性问题。下面讨论测温精度和电路参数的选择问题。

电阻R16与热敏电阻RT串联组成分压电路,对电源电压5 V分压,RT上的压降Vi=5 V·RT/(RT+R16)随温度变化而变化。该电压通过A/D的输入引脚AN0送入PIC16C71内部的A/D转换器,转换为数字信号,由程序读取使用。在RT上并接一个0.1 μF的电容C3实现滤波,用于消除干扰和噪声。在试用中发现,当选用的NTC热敏电阻(如标称值为10 kΩ)和分压电阻(如5.1 kΩ)的阻值较小时,热敏电阻在工作一段时间后易被击穿,而在选用阻值较大的NTC热敏电阻和分压电阻后,问题就较好地解决了。分析原因,应该是NTC热敏电阻中的工作电流和功耗较大造成的热击穿。因此应尽量选用阻值较大的NTC热敏电阻和分压电阻,尽量减小流过热敏电阻的电流。另一方面,考虑到PIC单片机的A/D输入信号引脚的输入漏电流最大为±500 nA,要保证A/D转换结果的正确,就要求损耗在信号源内阻上的电压不能超过10 mV(A/D基准电压为5 V时的1/2个LSB),这要求信号源内阻最大不要超过20 kΩ。当选用标称为50 kΩ,B25/50为4 050 K的NTC热敏电阻,其在温区(0~99℃)的阻值变化在168.3~3.217 kΩ之间。当选择固定分压电阻为20 kΩ时,A/D输入信号源的等效内阻是热敏电阻和分压电阻并联后的阻值,阻

欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/dianzi/2634531.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2022-08-11
下一篇 2022-08-11

发表评论

登录后才能评论

评论列表(0条)

保存