IEEE 802.15.4—2003协议共规定了27个通信信道:868 MHz有1个,速率为20 kbps;915 MHz有lO个,速率为40 kbps;2.45 GHz有16个,速率为250 khps。支持星形、树形和网状3种拓扑结构,按照功能划分网络中有完全功能(FFD)和简化功能(RFD)两种不同类型的设备。为了简化协议,IEE: E 802.15.4—2003满足OSI参考模型,规定了物理层和MAC层,每一层完成自身所规定的任务,并向上层提供服务任务接口。协议中数据通信方式可分为直接数据传送和间接数据传送两种,并且以数据帧的形式打包发送出去。网络可以在超帧和非超帧的模式下工作,为了提高其可靠性采用了CSMA/CA的媒质访问控制机制、确认帧的应答方式和CRC-16 ITU的校验机制,并可以加入一些数据加密和安全控制模式。出于低功耗、低成本考虑,物理层只有14条服务原语,MAC层有35条原语。与蓝牙相比,这些原语只是它的1/3。
1 硬件电路设计
一般情况下IEEE802.15.4网络设备的基本构成如图l所示。系统的电源通常由电池提供,也可以由稳压模块供给。RF收发芯片负责射频信号的产生和接收解调,其基准时钟由外部高精度的晶体振荡器提供;同时要实现一些物理层和MAC层的基本功能,例如编解码、信道选择、功率控制、接收机能量检测(RSSI)、链路质量指示(LQI)、空闲信道评估(CCA)和硬件CRC校验等。在实现这些基本功能的前提下,RF芯片应该尽量做到低功耗、高灵敏度和较小封装。微控制器要有丰富的资源来完成对RF芯片的控制,以及对传感器、各类应用接口和用户接口的实时响应。通常协议栈需要占用32 KB左右的存储空间。
1.1 AT86RF230性能和内部结构
Atmcl公司的AT86RF230是与ZigBee/IEEE802.15.4兼容的无线射频收发芯片。它工作在2.4 GHz ISM频段,拥有104dB链路预算,-101 dB的接收灵敏度和3 dB的传输功率,从而减少网络中所需节点设备的总数,大大降低了IEEE 802.15.4系统的组网成本。所有RF关键器件(除了天线、晶振、去耦电容外)都集成在一块芯片中,封装形式采用32引脚、5 mm×5mm×0.9mm大小的QFN封装。由该芯片所构成的设备仅需6个外部组件,功能框图如图2所示。终端节点通常是电池供电,发射模式下电流消耗为 17 mA,接收模式下为15 mA,睡眠模式下仅为O.7μA;工作电压可达1.8~3.6V,内部有集成的1.8V LDO。AT86RF230内部有35个可以通过SPI控制时序访问的8位寄存器,工作时有8个基本状态(可以根据需要扩展为14个)。片内发送数据和接收数据的缓冲分别为129字节和130字节,正好可以满足IEEE802.15.4协议规定的最大帧长度127字节的要求。发送时需要加2字节的 CRCl6校验码,接收时还要多加1字节的链路质量指示。
1.2 网络设备的硬件电路构成
硬件主要部分原理图如图3所示,模块的数字接口为ATmega128l与 AT86RF230之间的SPI接口以及其他4条控制线。AT-megal28l是Atmel公司的8位高性能的AVR单片机。其基本特征有:采用 RISC构架,具有135条指令,工作在16MHz时吞吐率可达16MIPS;片内具有128 KB Flash、4 KB片内E2PROM和8 KB SRAM,可以通过ISP或JTAG下载程序;工作频率最高可达16 MHz,工作电压为l.8~5.5V,掉电模式下只有O.1μA的工作电流。在本设计中ATmegal281工作于内部为8 MHz的振荡频率下。如果要采用与AT86RF230同步的外部时钟信号,那么CLKM引脚应接到ATmegal281的XTAL1脚上,并且熔丝位要设置为外部时钟。AT86RF230的各种工作状态中断信号由IRQ脚控制,这里接到ATmegal28l的ICPl脚产生捕获中断,因为捕获中断可通过设置噪声消除方式来减少外界的干扰,从而提高中断的可靠性。有关AT86RF230寄存器SPI读 写时序、状态转换图及各种中断控制的具体方法可以参阅参考文献。还需注意,AT86RF230所接外部晶振X1的长期工作频率稳定度要小于等于40 ppm,并根据晶振和芯片的驱动能力选择合适的负载电容。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)