基于以DSP为核心的无线通信系统的实时QQVGA视频传输设计与实现

基于以DSP为核心的无线通信系统的实时QQVGA视频传输设计与实现,第1张

本无线系统基于高速率射频芯片的视频通信系统,且具备即时拍摄功能;在视频(连续)模式下采用QQVGA的分辨率传输视频数据,为160×120(@13fps),基本上能达到实时视频的日的。在实际应用中,用户可以在接收端的LCD中观看(远处的)发送端附近的景物。当见到感兴趣的景物时,按下按钮稍等片刻,即可得到1.3M像素的图像,方便实用。为简化设计,该系统只用了8位色深和RGB的数据格式,且未采用CCD摄像芯片,也未使用FPGA芯片进行逻辑控制,节省了成本。

下面着重讲述以TMS320VC5402 DSP为控制核心的无线视频通信系统,详细描述DSP与摄像芯片以及DSP与射频芯片这两大部分的接口设计,分析设计中的要点,最后给出部分DSP汇编代码。

1 无线实时视频系统的组成与工作原理

1.1 OV9640摄像芯片简介

OV9640是美国OmniVision公司推出的高性能CM0S图像传感器芯片。支持130万像素的图像拍照和多种分辨率,包括l280×960、VGA、QQVGA、CIF、QCIF等及多种数据输出格式,如Raw RGB、YUV(4:2:2)、YcbCr(4:2:2)等;支持8位或16位数据输出;通过SC-CB接口对其编程,可实现图像处理的各种基本功能,譬如曝光控制、白平衡、色彩饱和、伽马控制等;芯片电压要求低,可应用于嵌入式移动设备。

1.2 nRF24L01射频芯片简介

nRF24L01是挪威Nordic公司的单片无线GFSK收发芯片,工作于2.4~2.5 GHz的ISM频段,无线传输率最大为2Mbps,与MCU采用SPI接口进行控制和数据传输。相比其上一代产品nRF2401,nRF24LOl的性能更为优越,功耗更低。它最多能支持6路数据通道,且每条通道均支持Enhanced ShockBurst(ESB)技术,具备自动应糟(AACK)和自动重发(ART)功能,减轻了MCU的负担,降低了无线数据的丢包率,提高了双向传输的效率。在开启ESB的情况下,nRF24L0l发送完数据包后将自动切换到接收模式以等待对方的应答。并会根据寄存器的设定来实施自动重发。

1.3 系统硬件电路

硬件电路由发送(获取)端和接收(存储显示)端两大部分组成,通过高速RF芯片实现在2.4 GHz频段的无线链接。发送端以TMS320VC5402 DSP作为控制核心,OV9610摄像头芯片作为视频(或图像)获取前端,AT29LV1024 Flash ROM作为DSP自举程序存储芯片,K4S161622H IMB容量的SDRAM作为程序运行空间以及视频数据缓冲,视频数据最终通过射频芯片nRF24LOl发射出去;接收端的硬件结构基本上与发送端一致,将前端的OV9640改换成后端的LCD显示即可。整个系统的总体结构框图如图1所示。

基于以DSP为核心的无线通信系统的实时QQVGA视频传输设计与实现, 数字无线实时视频通信和拍摄系统设计,第2张

1.4 系统工作原理和流程

1.4.1 发送端工作于视频流模式

1.4.2 发送端工作于拍摄模式

在视频流传输过程中,nRF24LOl可以同时监听空中信号并自动应答。若收到来自接收端的拍照通知(按下按钮),则把OV9640设定为标准拍摄模式,分辨率为l280×960(@8bit)。然后,DSP将nRF24L01设定为发送模式,并将此时的帧数据发送出去。图像数据发送完成并等到接收确认信号后,系统将重新回到视频流模式。若接收不成功,则nRF24LOl的自动重发功能将确保数据传输的完整性。

1.4.3 接收端的工作流程

接收端上电初始化的情况基本与发送端一致,但要将nRF2dL01(按预定地址)设定为接收模式以接收检测信号。检测到相符的地址后,nRF24L0l的自动应答功能会发送应答信号给发送端以确认收到信号,此时双方“握手”成功。接着,通过INTO中断通知DSP,使得DSP重新将 nRF24LOl设定为接收模式以接收来自发送端的连续视频流,并且打开LCD模块准备显示视频。最后DSP通过SDRAM缓冲视频流,送给LCD显示 (若LCD等其他后端模块为并行接口,则需要将数据转化成并行数据格式)。至此,系统已经能实现实时视频数据的无线传输,实时视频流的分辨率为 QQVGAl60×120(@13fps)。

欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/dianzi/2639657.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2022-08-12
下一篇 2022-08-12

发表评论

登录后才能评论

评论列表(0条)

保存