电磁波的应用教程详解

电磁波的应用教程详解,第1张

微波是电磁波的一个频段,波长在1毫米和1米之间,我们首先从电磁波的发展史谈起,再讨论电磁波的学理和主要频段,然后谈谈微波的各种应用,并挑几个与台湾有关的应用来做说明,最后介绍微波炉及微波加热的原理。

电磁波的学理

电磁波发展史中最重要的两个人是法拉第和马克士威尔,这两人都堪称物理学家的前10名,他们最主要的贡献就是我们要谈的。法拉第出生于1791年,他在1831年经由实验发现了「法拉第定律」:随时间变化的磁场会产生电场。例如把磁铁通过线圈,线圈上就会感应出电压及电流。法拉第定律之所以重要,是因为在这之前只知道一种方法可以产生电场,就是电荷,而法拉第发现了另一种产生电场的方法。

在发现法拉第定律的同年,马克士威尔也诞生了。1873年马克士威尔提出一个重要的理论:随时间变化的电场会产生磁场。这又是一个划时代的里程碑,因为在当时只知道电流能产生磁场。马克士威尔的学说因为是推理,到1879年他去世前都没有被接受,一直到了1887年赫兹用LC振荡器产生电磁波,马克士威尔的理论才终于获得证实!

当时大家只知道光是波,光的波动现象可以用干涉仪探测出来,但不知道光究竟是什么东西。马克士威尔说光波就是电磁波,由电场和磁场构成的,可是因为太创新,以至于抱憾而终。法拉第和马克士威尔伟大的地方就是,分别发现一个崭新的方法产生电场和磁场。

在这里我们用质块和d簧来比拟电磁波的振荡现象。d簧上绑一质块,把d簧自平衡位置移开,便有位能产生,松手后位能逐渐变成动能,在动能最大位能最小的时候,动能开始化为位能,最后又全部变成位能。下半个周期开始相同的循环,所以d簧和质块的振荡就是动能和位能之间的相互转换。

相同的道理可应用在具有一个电容器和一个电感器电路上。电容器充电后,接通电路,由于电容器上的正负电荷造成电压,所以有电流,电流流过电感器就产生磁场。这时电容器内的电场能量随电荷减少而变小,当电荷流光时,电场也没有了,能量全部变成磁场能量。磁场最大时电流也最大,可是因为电流一直在流,无法一下子降为零,于是又有电荷流到电容处,然后磁场能量又逐渐变回电场能量,最后全部变成电场能量。下半个周期又开始相同的循环,这是一种电磁振荡的现象,赫兹就是用这方法产生电磁波。

总结这两种振荡形式,可看出一个振荡现象的通则:

能量形式一、能量形式二

由这个通则可以看出振荡需要有两种储存能量的机制,比如质块和d簧机械震荡的能量储存机制是动能及位能,LC振荡器和电磁振荡的能量储存机制是电场及磁场。此外,还需要有能量交换的机制,比如质块和d簧的能量交换机制是d簧的复原力,LC振荡器的能量交换机制是电流和电荷。

电磁波虽然也是借着电场和磁场储存能量,但能量交换的机制则截然不同,是藉由电场和磁场的时间变化来交换。电磁波由于不需要藉由电流产生磁场,也不需要透过电荷产生电场,因此可以存在于没有介质的空间,例如外层空间。

赫兹利用LC振荡器产生电磁波,其过程是在振荡时,用电感耦合出一部分能量,经传输线传到电偶极天线,在天线上,电流会产生磁场,也会累积电荷,于是也产生电场。电场和磁场在天线处产生,两者大致相互垂直,之后便根据马克士威尔及法拉第的理论相互变换,形成了电场和磁场完全垂直的电磁波,并以光速传播出去。

电磁波的主要波段

电磁波的频率,从几个赫兹(1赫兹等于每秒钟振荡1次的频率,用Hz表示)以下,一直到1024 赫兹以上,范围可以说很广。整个频谱区可大致分为长波、无线电波(无线电波中包括了微波),还有红外线、可见光、紫外线,接着还有X光、γ射线等。

有一个很有趣的现象,就是水对电磁波的吸收系数与频率之间的关系。大气里有很多水蒸气,在很窄的可见光频段,水的吸收系数就像峡谷一样,突然下降1~100亿倍,让大气像是有一扇窗户,使太阳光能够穿透水蒸气到地面来。假如没有这么一个神奇的大峡谷,现在的地球会是一片黑,没有植物也没有光合作用,能量都没有了,吃的东西、烧的汽油通通不存在,当然我们也都不存在!所以水对电磁波的吸收系数看来像是一个自然奇景,是其它物质所没有的,几乎像是超自然的力量所设计的。

再来谈谈低频波段。60 Hz是每秒钟振动60次的低频,跟我们很有关系,这是家用电所使用频段,高压线就是在60 Hz传输能量。大家都很讨厌高压线,可是我们又必须靠它传输能量。那高压线如何传输能量呢?

它是借着电磁波的电场、磁场传输能量。高压线的电流会产生磁场,电压差会产生电场,电场和磁场正好互相垂直,因此可以传输能量。这样看来,高压线的四周像是一条电磁场的大洪流,反而是高压线的里面不能传输能量。高压线要摆这么高的原因不仅是因为碰到线会有危险,而是一进到电磁场的洪流区就很危险。

除了高压线外,只要是传播讯号或传输能量的电线,都利用相同的原理。汽、机车的电瓶是直流电,但是直流电线中也有电压及电流,电场、磁场也是互相垂直的,照样可以传输能量。

微波的应用

说完了微波两侧的光波和低频波之后,开始进入另一个主题:微波的应用。我们先从电磁波的频谱中,介绍几个与通讯及雷达有关的频段。

光纤通讯利用光波,除此之外,就是无线电波。无线电波频段里面有中波,由早期的收音机所使用,还有短波、AM、FM、及VHF电视频道等波段,而其中最重要的一段是微波,这是通讯和雷达最主要的频段。国际组织把无线电波频段划分为很多频道,甚至规定了军事设备使用的频道,不然就会彼此干扰,所以军用设备、民用设备、卫星、电视等等,都各有划定好的频道。太空通讯又有往上及往下的频道,都与地面通讯所用的频道不一样。

接下来谈谈日常通讯。电视表演要送到远处播放,需要在地面转接,一个转接站收到讯号后,再把它放大传送到另一个转接站,最后送到接收地的电视台播放,也可以经过卫星送到更远的地方。越洋电话、电信也是经过卫星送出讯号,所用的都是微波。

再说到国防系统,这当然也是绝对重要的。以美国为例,全球美军24小时都在指挥之下,里头有军舰、飞机、坦克,分散在地球不同的角落,彼此借着卫星通讯串在一起。此外,每一艘作战船上面都有各种雷达及通讯设备,光是微波发射器就数以百计,新型战机上面也有好几十个,发挥各种各样的功能,包括通讯、侦测、导航、干扰、火力控制等等。

例如飞行中的飞d,要击中目标,需要雷达导航,作战的飞机要射出讯号干扰敌方的雷达,让敌方的雷达无法抓住它的位置,聪明一点甚至还可以发出欺骗讯号,让敌方雷达把它的位置搞错,结果浪费一颗飞d。飞机和指挥部通讯也都要靠微波,其它像战车等等,也是类似的情形。

所以说微波对我们的影响非常大。军舰、战机保护我们,是间接的影响,地面通讯是直接的影响,现在几乎每个人都在拨打手机,就是微波在帮我们服务。

国内相关的微波研究

接下来谈谈几个跟国内相关的实际应用例子。笔者在清华大学专门研究高功率微波,而国内进行这方面研究的团队极少,所以就用清华大学的工作举例。先从微波的产生谈起,清华大学的「高频电磁实验室」跟中科院合作,一起研制微波发射器,经过多年的努力,制造出一系列的微波发射器。我们发展的一些技术,一个一个都要从头建立。

例如要产生微波,首先要用电子鎗产生电子流,然后把电子流的能量变成电磁波的能量。电子鎗是微波发射器里面的核心组件,计算机仿真设计后,要做工程设计,再来是精密加工,制造各种零件,然后焊接起来。其它各种各样的组件制造流程也一样,最后把全部组件焊接成一个发射器,里面的接触面超过100个以上,在不同的温度一次又一次地焊,只要一次出错,就前功尽弃。制造出成品后,再用高压电源测试,如果不合格,又是前功尽弃。

制程中需要一再地焊接,是因为发射器中必须保持高真空,以免电子碰撞到气体,如同真空管一样,因此这种高功率微波发射器,通常简称为「微波管」。由于微波管的制造如此不易,频率越高又越困难,在先进国家,毫米波段的微波管都列为输出管制品。我们的研究重点,也就在毫米波段,所以这项工作,对我们的国防相当重要。

前面提到的都是已经成熟的技术,微波是二次世界大战时开始发展的,现在已经进入工业界,是非常成功的一项研究,但也需要不断的创新。清华大学主要是在「磁旋行波放大器」及「单阳极磁控电子鎗」这一类的研究上面钻研,所研创的磁旋行波放大器能够把一个讯号放大1,000万倍,不论在功率、效率、增益或频宽上,都超越了传统的极限,在应用上带来了新的契机。

像美国这样的先进国家,已准备把磁旋行波放大器应用到太空科技上。美国有不少太空侦测设施,里面有各种各样的雷达侦测太空对象,例如敌人及自己的飞d、天空上的卫星、甚至天上的太空碎片等。太空碎片速度非常快,宇宙飞船一不小心被打到,就会像中了炮d一样,只是碎片的密度还不高,被打中机会不大。碎片有大有小,要看到1公分大小的太空碎片,就必须用磁旋行波放大器这一类的新设备。

欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/dianzi/2651335.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2022-08-12
下一篇 2022-08-12

发表评论

登录后才能评论

评论列表(0条)

保存