摘要:基于Labview图形化编程软件开发了一种用于光伏发电特性及周围环境测试的实时监测系统。该系统由传感器、变换器、FieldPoint模块及主监控PC组成。利用温度、电压、电流、辐照度等多种传感器、变换器采集发电系统现场的信息,输入到FieldPoint模块进行信号的调理及数据采集,经RS485总线传输到计算机进行数据的显示、处理、转换和存储,系统模块化的特点使测试项目可以扩充。利用DataSocket通信技术和Labview远程访问技术实现系统本地和远程监测的功能。该系统可实时同步测量光伏发电系统的各种数据,存储的数据库信息可以为日后的科学研究提供依据,为光伏发电技术的改进与提高奠定了基础。
1 引言
光伏发电系统的能量输出因周围环境的变化而表现出较大的差异,对光伏发电系统进行实时监测,可以获得原始测量数据,为系统的改进与优化以及以后的科学研究提供有用数据,对系统环境参数及其系统本身的电气性能进行监测和分析是保证系统正常高效运行的前提。光伏发电系统的运行一般是在无人职守的情况下进行,对地面上很分散的光伏系统进行监测维护是十分困难繁琐的,需要大量的时间和人力物力,因此在光伏发电系统中采用远程数据监测系统具有重要意义。Labview可以利用高性能的模块化硬件,结合高效灵活的软件来完成各种测试、测量和自动化应用。灵活高效的软件可以创建自定义的光伏监测系统的用户界面并能提供强大的后续数据处理能力,可以方便的设置数据处理、转换、存储的方式[4].模块化的硬件能方便的提供全方位的系统集成,另外Labview还有网页发布、报告生成、数据管理以及软件连接等功能。本文利用Labview的强大功能配合FieldPoint模块化分布式I/O设计了一种光伏发电数据监测系统,并通过网页发布的功能达到远程监测的目的。
2 光伏监测系统原理
图1为光伏数据监测系统的原理框图。用电流、电压、温度、风速等传感器感应光伏发电系统及周围环境的信息,生成可测量的电信号。由于传感器得到的信号可能会很微弱或者含有大量噪声,需通过信号调理装置进行放大、衰减、隔离、多路复用、滤波等 *** 作。通过调理后的信号就可以与数据采集设备连接了。监测系统采用工业RS485总线实现下位机与监控主PC之间的通讯。RS485总线最大的通信距离约为1219m,最大传输速率为10Mb/S,传输速率与传输距离成反比,在100Kb/S的传输速率下可达到最大的通信距离,加中继器以后可以达到更大的传输距离。Labview软件及其配套的DAQ(Data AcquisiTIon)驱动程序与数据采集硬件形成了一套完整的数据采集、分析和显示系统。同时Labview软件还能够完成数据存储任务,以便为以后的科学研究提供可靠数据。通过软件中的Web发布工具,可以通过互联网随时登入监测系统进行远程数据监测。
图1 光伏数据监测系统原理框图
3 光伏监测系统硬件设计3.1 传感器和变换器
光伏发电监测系统需要从现场获取的信息主要包括:①光伏方阵运行时的直流电流值、电压值、功率值,以及经过功率调节器以后的蓄电池充电参数。②采集风速值、光伏组件表面和周围环境的温度以及太阳的辐照度。③通过一定时期内采集的数据进行累计发电量、平均温度、平均辐照度等数值的计算。
采用与以上信息相对应的传感器和变换器对数据进行测量,温度传感器采用精密铂电阻温度传感器PT100,该传感器按照IEC751国际标准设计和制作,利用铂电阻在温度发生变化时其电阻值也发生变化的特性来测量温度,传感器元件由铂丝烧制,稳定性高,测量范围广,利用两个温度传感器可以分别对光伏组件表面温度和环境温度进行测量,将被测温度转换成(4~20)mA DC二线制标准信号而远程发送。电压的测量采用四通牌ST-A系列的STCV-800电压传感器,该系列传感器广泛用于电力系统的监测,电压测试范围分别为0~1200V.直流电流的测量选用武汉仪表公司生产的HD系列高精度直流大电流传感器。其工作原理如图2所示。
图2 电流传感器原理图
采用磁性比较方法,M为高导磁率材料铁芯,、为比例绕组,、分别提供给、直流电流。得到的直流磁势分别为, ,由于两个磁势和方向相反,当时,即铁芯内合成磁通为零时,磁势平衡方程为,且当时,.上述说明,即使是一个数值较大的单个电流,只要有足够的匝数,便可以用较小的与之平衡,并可用表示相应的数值,数值较小,便于直接进行精密测量,且为常量不受其他量的影响,因此用磁性比较方法测量直流大电流可以达到较高的精度。同样风速、太阳辐射量等信号的测量选用与光伏发电系统相配套传感器和变换器将信号其转换为标准电信号才能送入数据调理单元。
3.2 信号调理和数据采集装置
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)