nrf24l01收发程序详解

nrf24l01收发程序详解,第1张

  nRF24L01驱动程序分享   nRF24L01的发送程序:

  #include 《reg51.h》

  #define uchar unsigned char

  #define uint unsigned int

  sbit CE = P1^0; // Chip Enable pin signal (output)

  sbit CSN = P1^1; // Slave Select pin, (output to CSN, nRF24L01)

  sbit IRQ = P1^5; // Interrupt signal, from nRF24L01 (input)

  sbit MISO = P1^4; // Master In, Slave Out pin (input)

  sbit MOSI = P1^3; // Serial Clock pin, (output)

  sbit SCK = P1^2; // Master Out, Slave In pin (output)

  // SPI(nRF24L01) commands

  #define READ_REG 0x00 // Define read command to register

  #define WRITE_REG 0x20 // Define write command to register

  #define RD_RX_PLOAD 0x61 // Define RX payload register address

  #define WR_TX_PLOAD 0xA0 // Define TX payload register address

  #define FLUSH_TX 0xE1 // Define flush TX register command

  #define FLUSH_RX 0xE2 // Define flush RX register command

  #define REUSE_TX_PL 0xE3 // Define reuse TX payload register command

  #define NOP 0xFF // Define No OperaTIon, might be used to read status register

  // SPI(nRF24L01) registers(addresses)

  #define CONFIG 0x00 // ‘Config’ register address

  #define EN_AA 0x01 // ‘Enable Auto Acknowledgment’ register address

  #define EN_RXADDR 0x02 // ‘Enabled RX addresses’ register address

  #define SETUP_AW 0x03 // ‘Setup address width’ register address

  #define SETUP_RETR 0x04 // ‘Setup Auto. Retrans’ register address

  #define RF_CH 0x05 // ‘RF channel’ register address

  #define RF_SETUP 0x06 // ‘RF setup’ register address

  #define STATUS 0x07 // ‘Status’ register address

  #define OBSERVE_TX 0x08 // ‘Observe TX’ register address

  #define CD 0x09 // ‘Carrier Detect’ register address

  #define RX_ADDR_P0 0x0A // ‘RX address pipe0’ register address

  #define RX_ADDR_P1 0x0B // ‘RX address pipe1’ register address

  #define RX_ADDR_P2 0x0C // ‘RX address pipe2’ register address

  #define RX_ADDR_P3 0x0D // ‘RX address pipe3’ register address

  #define RX_ADDR_P4 0x0E // ‘RX address pipe4’ register address

  #define RX_ADDR_P5 0x0F // ‘RX address pipe5’ register address

  #define TX_ADDR 0x10 // ‘TX address’ register address

  #define RX_PW_P0 0x11 // ‘RX payload width, pipe0’ register address

  #define RX_PW_P1 0x12 // ‘RX payload width, pipe1’ register address

  #define RX_PW_P2 0x13 // ‘RX payload width, pipe2’ register address

  #define RX_PW_P3 0x14 // ‘RX payload width, pipe3’ register address

  #define RX_PW_P4 0x15 // ‘RX payload width, pipe4’ register address

  #define RX_PW_P5 0x16 // ‘RX payload width, pipe5’ register address

  #define FIFO_STATUS 0x17 // ‘FIFO Status Register’ register address

  #define TX_ADR_WIDTH 5 // 5字节宽度的发送/接收地址

  #define TX_PLOAD_WIDTH 4 // 数据通道有效数据宽度

  uchar code TX_ADDRESS[TX_ADR_WIDTH] = {0x34,0x43,0x10,0x10,0x01}; // 定义一个静态发送地址

  uchar RX_BUF[TX_PLOAD_WIDTH];

  uchar TX_BUF[TX_PLOAD_WIDTH];

  uchar flag;

  uchar DATA = 0x01;

  uchar bdata sta;

  sbit RX_DR = sta^6;

  sbit TX_DS = sta^5;

  sbit MAX_RT = sta^4;

  void init_io(void)

  {

  CE = 0; // 待机

  CSN = 1; // SPI禁止

  SCK = 0; // SPI时钟置低

  IRQ = 1; // 中断复位

  }

  void delay_ms(uchar x)

  {

  uchar i, j;

  i = 0;

  for(i=0; i《x; i++)

  {

  j = 250;

  while(--j);

  j = 250;

  while(--j);

  }

  }

  uchar SPI_RW(uchar byte)

  {

  uchar i;

  for(i=0; i《8; i++) // 循环8次

  {

  MOSI = (byte & 0x80); // byte最高位输出到MOSI

  byte 《《= 1; // 低一位移位到最高位

  SCK = 1; // 拉高SCK,nRF24L01从MOSI读入1位数据,同时从MISO输出1位数据

  byte |= MISO; // 读MISO到byte最低位

  SCK = 0; // SCK置低

  }

  return(byte); // 返回读出的一字节

  }

  uchar SPI_RW_Reg(uchar reg, uchar value)

  {

  uchar status;

  CSN = 0; // CSN置低,开始传输数据

  status = SPI_RW(reg); // 选择寄存器,同时返回状态字

  SPI_RW(value); // 然后写数据到该寄存器

  CSN = 1; // CSN拉高,结束数据传输

  return(status); // 返回状态寄存器

  }

欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/dianzi/2656635.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2022-08-13
下一篇 2022-08-13

发表评论

登录后才能评论

评论列表(0条)

保存