Massive MIMO(大规模天线)技术是4.5G/5G的关键技术之一,全球通信业者对Massive MIMO技术都非常关注。中国移动和日本软银已经开展了TD-LTE Massive MIMO技术。中国联通、中国电信、Telkomsel等运营商完成了FDD Massive MIMO外场测试。我国5G第一阶段试验中Massive MIMO被作为关键技术,且有华为、中兴、爱立信等5家厂商参与试验。3GPP从R13版本开始已经将支持Massive MIMO作为重要特性之一。
Massive MIMO技术,在基站收发信机上使用大数量(如64/128/256等)的阵列天线实现了更大的无线数据流量和连接可靠性。相比于以前的单/双极化天线及4/8通道天线,大规模天线技术能够通过不同的维度(空域、时域、频域、极化域等)提升频谱和能量的利用效率;3D赋形和信道预估技术可以自适应地调整各天线阵子的相位和功率,显著提高系统的波束指向准确性,将信号强度集中于特定指向区域和特定用户群,在增强用户信号的同时可以显著降低小区内自干扰、邻区干扰,是提升用户信号载干比的绝佳技术。
如何评价Massive MIMO技术,采用什么样的测试指标和测试方法,怎样公平且高效的衡量Massive MIMO技术?这也是当前通信科技业者十分关心问题。
2、Massive MIMO系统架构支持Massive MIMO的有源天线基站架构以三个主要功能模块为代表:射频收发单元阵列,射频分配网络和多天线阵列。
射频收发单元阵列包含多个发射单元和接收单元。发射单元获得基带输入并提供射频发送输出,射频发送输出将通过射频分配网络分配到天线阵列,接收单元执行与发射单元 *** 作相反的工作。RDN将输出信号分配到相应天线路径和天线单元,并将天线的输入信号分配到相反的方向。
RDN可包括在发射单元(或接收单元)和无源天线阵列之间简单的一对一的映射。在这种情况下,射频分配网络将是一个逻辑实体但未必是一个物理实体。
天线阵列可包括各种实现和配置,如极化、空间分离等。
射频收发单元阵列、射频分配网络和天线阵列的物理位置有可能不同于下图逻辑表示,取决于实现。
图1 支持MassiveMIMO的有源天线基站架构
3、Massive MIMO测试技术3.1 天线系统的演进对测试技术的挑战
随着天线系统向现代化的发展,尤其是5G的演进,一体化的基站有源天线系统(AAS)形态逐渐成为主流,通道数越来越多,有源天线连接方式也会简化,RU和天线高度集成,射频指标不再局限于传统的RU传导测试,OTA测试将成为未来测试演进的方向,同时也将带来极大的测试挑战。
表1 天线系统的演进对测试技术的挑战
3.2 测试信号调制化
图2 测试信号调制
有源天线工作在各种业务载波状态下实现网络覆盖,为真实测试有源天线性能,测试系统需要具备以下测试能力:
1、测试系统需求支持业务信号的幅度、相位测试。尤其是存在的大带宽信号测试;
2、方向图测试信号模式需要讨论定义。
3.3 天线波束多样化
图3 Massive MIMO天线网络覆盖示意图
在天线波束辐射特性趋于复杂场景下:
1:如何准确评估天线业务波束指向准确性、副瓣、波瓣宽度等;
2:如何选择多波束的测试场景;
3:多波束天线的测试效率问题;
4:对于多波束如何通过二维的辐射特性,评估覆盖性能。
测试建议:
1:需要评估在两个主面下,有源天线尤其是Massive MIMO天线指标要求;需要研究定义3D辐射指标要求;
2:在真实业务信号下评估多波束辐射性能,建立测试Case集。
3.4 通信天线频段高频化
高频(毫米波)覆盖一直属于业界难题,而Massive MIMO能很好解决该问题。其作为5G的扩展频段,提供容量保障。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)