从训练到测试,虚拟环境正在让自动驾驶变得越来越完善。在训练过程中,它能够帮我们节省时间,提高效率,并且帮我们规避在真实世界中进行测试时的风险。在无人驾驶的开发中,让人类安全员在世界道路上进行测试是必不可少的一个手段。
在打造交通工具的时候,无论它是由人类还是计算机驾驶,安全都是首要考虑的因素。
在自动驾驶开发过程中,需要在各种行驶条件下,对无人驾驶技术进行不断的验证测试,从而确保其安全程度能够高于人类驾驶员的 *** 作。这意味着,在一些时候我们要在实际道路上对其进行测试。然而同样重要的,是在虚拟道路上的仿真测试,虚拟测试也是积累无人驾驶汽车测试里程的重要手段之一。
具体说来,虚拟道路测试,能够有效对危险或不常见的驾驶场景进行测试。虚拟道路测试的灵活性和多用性,使其在自动驾驶技术开发中发挥着重要作用。
如果没有仿真道路测试,要观察车辆应对真实交通场景的反应,有可能会产生各种危险。譬如说,当一个孩子从一辆停着的车辆后方突然冲到了马路中央,或是有另一辆车在闯红灯。
而现在得益于高级图形处理技术的发展,工程师可以模拟出各种实际生活中的交通场景,并且根据需求对其进行调整。例如,在需要的时候,我们可以仿真出暴风雪的场景,即使你现在身处的是沙漠环境;另外,我们还可以在日出和日落时分模拟出正午晃眼的阳光,测试无人驾驶汽车在这种天气条件下的反应。其次,一些有可能使人类测试员处于危险当中的场景,我们也可以让其在虚拟测试中再现,例如仿真出一条布满薄冰的高速公路。
仿真测试还有另一个优势,那就是在短时间内对多种路况进行再现。在今年英伟达GPU开发者大会欧洲站的主题演讲环节,英伟达CEO 黄仁勋介绍称,使用NVIDIA DGX和Tensor RT 3进行仿真,工程师可以在5个小时内,完成约48万公里的道路测试。按照这个速度,仅仅两天之内,可完成全美所有道路的测试。
要想让数字仿真技术在自动驾驶汽车的训练和测试中发挥高效发挥,我们得保证虚拟世界要和真实世界无限接近。在GPU的驱动下,细节逼真的图像以及鲁棒的物理引擎,为工程人员提供给了所需的有利条件。
当模拟环境成功创建之后,它必须要接入一套自动驾驶系统。英伟达的统一GPU架构,使得自动驾驶技术在实车装载的Drive PX平台和实验室或大数据中心的仿真环境之间能够相对容易地进行迁移。
各家公司给出的解决方案DRIVE PX是一个人工智能车载计算平台,它负责将多个传感器获取的数据进行融合,运行自动驾驶所需的复杂软件算法,然后将决策指令发送给车辆执行。
在经过配置之后, DRIVE PX也可以将模拟传感器的数据进行融合,然后输出模拟驾驶指令。在本届英伟达开发者大会欧洲站的活动现场,一些企业也展示了基于 DRIVE PX进行自动驾驶仿真测试的方法。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)